Cargando…
Selection of 51 predictors from 13,782 candidate multimodal features using machine learning improves coronary artery disease prediction
Current cardiovascular risk assessment tools use a small number of predictors. Here, we study how machine learning might: (1) enable principled selection from a large multimodal set of candidate variables and (2) improve prediction of incident coronary artery disease (CAD) events. An elastic net-bas...
Autores principales: | Agrawal, Saaket, Klarqvist, Marcus D.R., Emdin, Connor, Patel, Aniruddh P., Paranjpe, Manish D., Ellinor, Patrick T., Philippakis, Anthony, Ng, Kenney, Batra, Puneet, Khera, Amit V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672148/ https://www.ncbi.nlm.nih.gov/pubmed/34950898 http://dx.doi.org/10.1016/j.patter.2021.100364 |
Ejemplares similares
-
Silhouette images enable estimation of body fat distribution and associated cardiometabolic risk
por: Klarqvist, Marcus D. R., et al.
Publicado: (2022) -
BMI-adjusted adipose tissue volumes exhibit depot-specific and divergent associations with cardiometabolic diseases
por: Agrawal, Saaket, et al.
Publicado: (2023) -
Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots
por: Agrawal, Saaket, et al.
Publicado: (2022) -
Prediction performance and fairness heterogeneity in cardiovascular risk models
por: Kartoun, Uri, et al.
Publicado: (2022) -
Exploring the link between Gilbert’s syndrome and atherosclerotic cardiovascular disease: insights from a subpopulation-based analysis of over one million individuals
por: Kartoun, Uri, et al.
Publicado: (2023)