Cargando…

Multi-carbohydrase application into energy and amino acid deficient broiler diets: A strategy to enhance performance of broiler chickens

The effect of Multi-Carbohydrase (MC) supplementation on growth performance, visceral organ weights, blood metabolites, jejunum morphology, nutrient digestibility, and carcass parameters of broiler chickens fed nutrient-deficient corn soybean-meal based diets containing high levels of non-starch pol...

Descripción completa

Detalles Bibliográficos
Autores principales: Wickramasuriya, Samiru Sudharaka, Macelline, Shemil Priyan, Cho, Hyun Min, Hong, Jun Seon, Patterson, Rob, Heo, Jung Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Animal Sciences and Technology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672263/
https://www.ncbi.nlm.nih.gov/pubmed/34957447
http://dx.doi.org/10.5187/jast.2021.e104
Descripción
Sumario:The effect of Multi-Carbohydrase (MC) supplementation on growth performance, visceral organ weights, blood metabolites, jejunum morphology, nutrient digestibility, and carcass parameters of broiler chickens fed nutrient-deficient corn soybean-meal based diets containing high levels of non-starch polysaccharides from wheat and wheat by-products was investigated. A total of 378 one-day-old Ross 308 broiler chickens were randomly assigned to one of seven dietary treatments to give six replicates per treatment (nine birds per pen). Dietary treatments were as follows: (1) positive control (PC; commercial standard diet); (2) negative control 1 (NC-1; PC-120 kcal/kg metabolizable energy); (3) NC-2 (PC-3% standardized ileal digestibility [SID] amino acids). The remaining four dietary treatments were formulated with the addition of MC (MC; Superzyme-CS™) into two negative controls along with two supplementation levels of MC (i.e., 0.025% and 0.05%, respectively). Improved body weight, average daily gain, and feed conversion ratio (p < 0.05) were observed in broiler chickens fed a reduced energy diet supplemented with MC compared to birds fed NC-1 diet from days 1-35. Additionally, birds fed a reduced energy diet with 0.05% MC showed comparable (p > 0.05) growth performance with birds fed PC for 35-day post-hatch. Furthermore, the addition of MC into reduced amino acid diets improved (p < 0.05) growth performance. Broiler chickens fed MC supplemented nutrient-deficient diets showed a greater (p < 0.05) villus height to crypt depth ratio than birds fed diets without MC on days 21 and 35. Similarly, improved (p < 0.05) nutrient digestibility was observed in birds fed reduced energy diets supplemented with MC compared to birds fed NC-1 on days 21 and 35. Our results suggest that MC supplementation into reduced energy or reduced amino acid diets containing wheat and wheat by-products has the potential to improve growth performance and nutrient digestibility while maintaining healthier gut morphology in broiler chickens from 1 to 35 days of age.