Cargando…
Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates Toxic for FGFR1-Overproducing Cancers
[Image: see text] Fibroblast growth factor receptor 1 (FGFR1) is an integral membrane protein that transmits prolife signals through the plasma membrane. Overexpression of FGFR1 has been reported in various tumor types, and therefore, this receptor constitutes an attractive molecular target for sele...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672352/ https://www.ncbi.nlm.nih.gov/pubmed/34855396 http://dx.doi.org/10.1021/acs.biomac.1c01280 |
_version_ | 1784615340589711360 |
---|---|
author | Porębska, Natalia Knapik, Agata Poźniak, Marta Krzyścik, Mateusz Adam Zakrzewska, Małgorzata Otlewski, Jacek Opaliński, Łukasz |
author_facet | Porębska, Natalia Knapik, Agata Poźniak, Marta Krzyścik, Mateusz Adam Zakrzewska, Małgorzata Otlewski, Jacek Opaliński, Łukasz |
author_sort | Porębska, Natalia |
collection | PubMed |
description | [Image: see text] Fibroblast growth factor receptor 1 (FGFR1) is an integral membrane protein that transmits prolife signals through the plasma membrane. Overexpression of FGFR1 has been reported in various tumor types, and therefore, this receptor constitutes an attractive molecular target for selective anticancer therapies. Here, we present a novel system for generation of intrinsically fluorescent, self-assembling, oligomeric cytotoxic conjugates with high affinity and efficient internalization targeting FGFR1. In our approach, we employed FGF1 as an FGFR1 recognizing molecule and genetically fused it to green fluorescent protein polygons (GFPp), a fluorescent oligomerization scaffold, resulting in a set of GFPp_FGF1 oligomers with largely improved receptor binding. To validate the applicability of using GFPp_FGF1 oligomers as cancer probes and drug carriers in targeted therapy of cancers with aberrant FGFR1, we selected a trimeric variant from generated GFPp_FGF1 oligomers and further engineered it by introducing FGF1-stabilizing mutations and by incorporating the cytotoxic drug monomethyl auristatin E (MMAE) in a site-specific manner. The resulting intrinsically fluorescent, trimeric cytotoxic conjugate 3xGFPp_FGF1E_LPET_MMAE exhibits nanomolar affinity for the receptor and very high stability. Notably, the intrinsic fluorescence of 3xGFPp_FGF1E_LPET_MMAE allows for tracking the cellular transport of the conjugate, demonstrating that 3xGFPp_FGF1E_LPET_MMAE is efficiently and selectively internalized into cells expressing FGFR1. Importantly, we show that 3xGFPp_FGF1E_LPET_MMAE displays very high cytotoxicity against a panel of different cancer cells overproducing FGFR1 while remaining neutral toward cells devoid of FGFR1 expression. Our data implicate that the engineered fluorescent conjugates can be used for imaging and targeted therapy of FGFR1-overproducing cancers. |
format | Online Article Text |
id | pubmed-8672352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-86723522021-12-15 Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates Toxic for FGFR1-Overproducing Cancers Porębska, Natalia Knapik, Agata Poźniak, Marta Krzyścik, Mateusz Adam Zakrzewska, Małgorzata Otlewski, Jacek Opaliński, Łukasz Biomacromolecules [Image: see text] Fibroblast growth factor receptor 1 (FGFR1) is an integral membrane protein that transmits prolife signals through the plasma membrane. Overexpression of FGFR1 has been reported in various tumor types, and therefore, this receptor constitutes an attractive molecular target for selective anticancer therapies. Here, we present a novel system for generation of intrinsically fluorescent, self-assembling, oligomeric cytotoxic conjugates with high affinity and efficient internalization targeting FGFR1. In our approach, we employed FGF1 as an FGFR1 recognizing molecule and genetically fused it to green fluorescent protein polygons (GFPp), a fluorescent oligomerization scaffold, resulting in a set of GFPp_FGF1 oligomers with largely improved receptor binding. To validate the applicability of using GFPp_FGF1 oligomers as cancer probes and drug carriers in targeted therapy of cancers with aberrant FGFR1, we selected a trimeric variant from generated GFPp_FGF1 oligomers and further engineered it by introducing FGF1-stabilizing mutations and by incorporating the cytotoxic drug monomethyl auristatin E (MMAE) in a site-specific manner. The resulting intrinsically fluorescent, trimeric cytotoxic conjugate 3xGFPp_FGF1E_LPET_MMAE exhibits nanomolar affinity for the receptor and very high stability. Notably, the intrinsic fluorescence of 3xGFPp_FGF1E_LPET_MMAE allows for tracking the cellular transport of the conjugate, demonstrating that 3xGFPp_FGF1E_LPET_MMAE is efficiently and selectively internalized into cells expressing FGFR1. Importantly, we show that 3xGFPp_FGF1E_LPET_MMAE displays very high cytotoxicity against a panel of different cancer cells overproducing FGFR1 while remaining neutral toward cells devoid of FGFR1 expression. Our data implicate that the engineered fluorescent conjugates can be used for imaging and targeted therapy of FGFR1-overproducing cancers. American Chemical Society 2021-12-02 2021-12-13 /pmc/articles/PMC8672352/ /pubmed/34855396 http://dx.doi.org/10.1021/acs.biomac.1c01280 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Porębska, Natalia Knapik, Agata Poźniak, Marta Krzyścik, Mateusz Adam Zakrzewska, Małgorzata Otlewski, Jacek Opaliński, Łukasz Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates Toxic for FGFR1-Overproducing Cancers |
title | Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates
Toxic for FGFR1-Overproducing Cancers |
title_full | Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates
Toxic for FGFR1-Overproducing Cancers |
title_fullStr | Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates
Toxic for FGFR1-Overproducing Cancers |
title_full_unstemmed | Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates
Toxic for FGFR1-Overproducing Cancers |
title_short | Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates
Toxic for FGFR1-Overproducing Cancers |
title_sort | intrinsically fluorescent oligomeric cytotoxic conjugates
toxic for fgfr1-overproducing cancers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672352/ https://www.ncbi.nlm.nih.gov/pubmed/34855396 http://dx.doi.org/10.1021/acs.biomac.1c01280 |
work_keys_str_mv | AT porebskanatalia intrinsicallyfluorescentoligomericcytotoxicconjugatestoxicforfgfr1overproducingcancers AT knapikagata intrinsicallyfluorescentoligomericcytotoxicconjugatestoxicforfgfr1overproducingcancers AT pozniakmarta intrinsicallyfluorescentoligomericcytotoxicconjugatestoxicforfgfr1overproducingcancers AT krzyscikmateuszadam intrinsicallyfluorescentoligomericcytotoxicconjugatestoxicforfgfr1overproducingcancers AT zakrzewskamałgorzata intrinsicallyfluorescentoligomericcytotoxicconjugatestoxicforfgfr1overproducingcancers AT otlewskijacek intrinsicallyfluorescentoligomericcytotoxicconjugatestoxicforfgfr1overproducingcancers AT opalinskiłukasz intrinsicallyfluorescentoligomericcytotoxicconjugatestoxicforfgfr1overproducingcancers |