Cargando…

Identification of key pathways and RNAs associated with skeletal muscle atrophy after spinal cord injury

OBJECTIVE: This study was performed to investigate the potential key molecules involved in the progression of skeletal muscle atrophy after SCI. METHODS: Based on GSE21497 dataset, the DEmRNAs and DElncRNAs were screened after differentially expressed analysis. Then the enrichment analyses were perf...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Li, Cai, Guoying, Jiang, Lian, Gao, Linhui, Yang, Zehui, Zhang, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Society of Musculoskeletal and Neuronal Interactions 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672411/
https://www.ncbi.nlm.nih.gov/pubmed/34854395
Descripción
Sumario:OBJECTIVE: This study was performed to investigate the potential key molecules involved in the progression of skeletal muscle atrophy after SCI. METHODS: Based on GSE21497 dataset, the DEmRNAs and DElncRNAs were screened after differentially expressed analysis. Then the enrichment analyses were performed on DEmRNAs. Then the PPI network and ceRNA network were constructed. Finally, the DGIdb was utilized to predict drug-gene interactions. RESULTS: A total of 412 DEmRNAs and 21 DElncRNAs were obtained. The DEmRNAs were significantly enriched in MAPK signaling pathway and FoxO signaling pathway. In addition, UBE2D1, JUN, and FBXO32 had higher node degrees in PPI network, and the top 20 genes with high degree were significantly enriched in FoxO signaling pathway and Endometrial cancer. Moreover, FOXO3 was regulated by hsa-miR-1207-5p and hsa-miR-1207-5p was regulated by lncRNA RP11-253E3.3 in ceRNA network. Finally, 37 drug-gene interactions were obtained based on the 26 genes in ceRNA network. CONCLUSION: UBE2D1, JUN, and FBXO32 are likely to be related to the progression of skeletal muscle atrophy after SCI, and activating of MAPK signaling pathway, Endometrial cancer and FoxO signaling pathway may induce skeletal muscle inflammation, apoptosis, autophagy and atrophy after SCI. Moreover, RP11-253E3.3-hsa-miR-1207-5p-FOXO3 axis may be a promising therapeutic target for skeletal muscle atrophy after SCI.