Cargando…
Assessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal
INTRODUCTION: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain...
Autores principales: | Sanjari, Neda, Shalbaf, Ahmad, Shalbaf, Reza, Sleigh, Jamie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Iranian Neuroscience Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672664/ https://www.ncbi.nlm.nih.gov/pubmed/34925723 http://dx.doi.org/10.32598/bcn.12.2.2034.2 |
Ejemplares similares
-
Hand Motor Imagery Classification Using Effective Connectivity and Hierarchical Machine Learning in EEG Signals
por: Maghsoudi, Arash, et al.
Publicado: (2022) -
Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
por: Maghsoudi, Arash, et al.
Publicado: (2021) -
EEG entropy measures in anesthesia
por: Liang, Zhenhu, et al.
Publicado: (2015) -
A Hybrid EEG-based Emotion Recognition Approach Using Wavelet Convolutional Neural Networks and Support Vector Machine
por: Bagherzadeh, Sara, et al.
Publicado: (2023) -
Automated detection of COVID-19 using ensemble of transfer learning with deep convolutional neural network based on CT scans
por: gifani, Parisa, et al.
Publicado: (2020)