Cargando…

Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules

Recent explosive growth of ‘make-on-demand’ chemical libraries brought unprecedented opportunities but also significant challenges to the field of computer-aided drug discovery. To address this expansion of the accessible chemical universe, molecular docking needs to accurately rank billions of chem...

Descripción completa

Detalles Bibliográficos
Autores principales: Gentile, Francesco, Fernandez, Michael, Ban, Fuqiang, Ton, Anh-Tien, Mslati, Hazem, Perez, Carl F., Leblanc, Eric, Yaacoub, Jean Charle, Gleave, James, Stern, Abraham, Wong, Bill, Jean, François, Strynadka, Natalie, Cherkasov, Artem
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672713/
https://www.ncbi.nlm.nih.gov/pubmed/35024120
http://dx.doi.org/10.1039/d1sc05579h
_version_ 1784615406702428160
author Gentile, Francesco
Fernandez, Michael
Ban, Fuqiang
Ton, Anh-Tien
Mslati, Hazem
Perez, Carl F.
Leblanc, Eric
Yaacoub, Jean Charle
Gleave, James
Stern, Abraham
Wong, Bill
Jean, François
Strynadka, Natalie
Cherkasov, Artem
author_facet Gentile, Francesco
Fernandez, Michael
Ban, Fuqiang
Ton, Anh-Tien
Mslati, Hazem
Perez, Carl F.
Leblanc, Eric
Yaacoub, Jean Charle
Gleave, James
Stern, Abraham
Wong, Bill
Jean, François
Strynadka, Natalie
Cherkasov, Artem
author_sort Gentile, Francesco
collection PubMed
description Recent explosive growth of ‘make-on-demand’ chemical libraries brought unprecedented opportunities but also significant challenges to the field of computer-aided drug discovery. To address this expansion of the accessible chemical universe, molecular docking needs to accurately rank billions of chemical structures, calling for the development of automated hit-selecting protocols to minimize human intervention and error. Herein, we report the development of an artificial intelligence-driven virtual screening pipeline that utilizes Deep Docking with Autodock GPU, Glide SP, FRED, ICM and QuickVina2 programs to screen 40 billion molecules against SARS-CoV-2 main protease (Mpro). This campaign returned a significant number of experimentally confirmed inhibitors of Mpro enzyme, and also enabled to benchmark the performance of twenty-eight hit-selecting strategies of various degrees of stringency and automation. These findings provide new starting scaffolds for hit-to-lead optimization campaigns against Mpro and encourage the development of fully automated end-to-end drug discovery protocols integrating machine learning and human expertise.
format Online
Article
Text
id pubmed-8672713
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-86727132022-01-11 Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules Gentile, Francesco Fernandez, Michael Ban, Fuqiang Ton, Anh-Tien Mslati, Hazem Perez, Carl F. Leblanc, Eric Yaacoub, Jean Charle Gleave, James Stern, Abraham Wong, Bill Jean, François Strynadka, Natalie Cherkasov, Artem Chem Sci Chemistry Recent explosive growth of ‘make-on-demand’ chemical libraries brought unprecedented opportunities but also significant challenges to the field of computer-aided drug discovery. To address this expansion of the accessible chemical universe, molecular docking needs to accurately rank billions of chemical structures, calling for the development of automated hit-selecting protocols to minimize human intervention and error. Herein, we report the development of an artificial intelligence-driven virtual screening pipeline that utilizes Deep Docking with Autodock GPU, Glide SP, FRED, ICM and QuickVina2 programs to screen 40 billion molecules against SARS-CoV-2 main protease (Mpro). This campaign returned a significant number of experimentally confirmed inhibitors of Mpro enzyme, and also enabled to benchmark the performance of twenty-eight hit-selecting strategies of various degrees of stringency and automation. These findings provide new starting scaffolds for hit-to-lead optimization campaigns against Mpro and encourage the development of fully automated end-to-end drug discovery protocols integrating machine learning and human expertise. The Royal Society of Chemistry 2021-11-17 /pmc/articles/PMC8672713/ /pubmed/35024120 http://dx.doi.org/10.1039/d1sc05579h Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Gentile, Francesco
Fernandez, Michael
Ban, Fuqiang
Ton, Anh-Tien
Mslati, Hazem
Perez, Carl F.
Leblanc, Eric
Yaacoub, Jean Charle
Gleave, James
Stern, Abraham
Wong, Bill
Jean, François
Strynadka, Natalie
Cherkasov, Artem
Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules
title Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules
title_full Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules
title_fullStr Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules
title_full_unstemmed Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules
title_short Automated discovery of noncovalent inhibitors of SARS-CoV-2 main protease by consensus Deep Docking of 40 billion small molecules
title_sort automated discovery of noncovalent inhibitors of sars-cov-2 main protease by consensus deep docking of 40 billion small molecules
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672713/
https://www.ncbi.nlm.nih.gov/pubmed/35024120
http://dx.doi.org/10.1039/d1sc05579h
work_keys_str_mv AT gentilefrancesco automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT fernandezmichael automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT banfuqiang automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT tonanhtien automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT mslatihazem automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT perezcarlf automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT leblanceric automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT yaacoubjeancharle automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT gleavejames automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT sternabraham automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT wongbill automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT jeanfrancois automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT strynadkanatalie automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules
AT cherkasovartem automateddiscoveryofnoncovalentinhibitorsofsarscov2mainproteasebyconsensusdeepdockingof40billionsmallmolecules