Cargando…
Total synthesis and mechanism of action of the antibiotic armeniaspirol A
Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synt...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672772/ https://www.ncbi.nlm.nih.gov/pubmed/35024125 http://dx.doi.org/10.1039/d1sc04290d |
_version_ | 1784615417459769344 |
---|---|
author | Arisetti, Nanaji Fuchs, Hazel L. S. Coetzee, Janetta Orozco, Manuel Ruppelt, Dominik Bauer, Armin Heimann, Dominik Kuhnert, Eric Bhamidimarri, Satya P. Bafna, Jayesh A. Hinkelmann, Bettina Eckel, Konstantin Sieber, Stephan A. Müller, Peter P. Herrmann, Jennifer Müller, Rolf Winterhalter, Mathias Steinem, Claudia Brönstrup, Mark |
author_facet | Arisetti, Nanaji Fuchs, Hazel L. S. Coetzee, Janetta Orozco, Manuel Ruppelt, Dominik Bauer, Armin Heimann, Dominik Kuhnert, Eric Bhamidimarri, Satya P. Bafna, Jayesh A. Hinkelmann, Bettina Eckel, Konstantin Sieber, Stephan A. Müller, Peter P. Herrmann, Jennifer Müller, Rolf Winterhalter, Mathias Steinem, Claudia Brönstrup, Mark |
author_sort | Arisetti, Nanaji |
collection | PubMed |
description | Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synthesis of (±) armeniaspirol A in six steps with a yield of 20.3% that includes the formation of the spirocycle through a copper-catalyzed radical cross-coupling reaction. In mechanistic biological experiments, armeniaspirol A exerted potent membrane depolarization, accounting for the pH-dependent antibiotic activity. Armeniaspirol A also disrupted the membrane potential and decreased oxygen consumption in mitochondria. In planar lipid bilayers and in unilamellar vesicles, armeniaspirol A transported protons across membranes in a protein-independent manner, demonstrating that armeniaspirol A acted as a protonophore. We provide evidence that this mechanism might account for the antibiotic activity of multiple chloropyrrole-containing natural products isolated from various origins that share a 4-acylphenol moiety coupled to chloropyrrole as a joint pharmacophore. We additionally describe an efflux-mediated mechanism of resistance against armeniaspirols. |
format | Online Article Text |
id | pubmed-8672772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-86727722022-01-11 Total synthesis and mechanism of action of the antibiotic armeniaspirol A Arisetti, Nanaji Fuchs, Hazel L. S. Coetzee, Janetta Orozco, Manuel Ruppelt, Dominik Bauer, Armin Heimann, Dominik Kuhnert, Eric Bhamidimarri, Satya P. Bafna, Jayesh A. Hinkelmann, Bettina Eckel, Konstantin Sieber, Stephan A. Müller, Peter P. Herrmann, Jennifer Müller, Rolf Winterhalter, Mathias Steinem, Claudia Brönstrup, Mark Chem Sci Chemistry Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synthesis of (±) armeniaspirol A in six steps with a yield of 20.3% that includes the formation of the spirocycle through a copper-catalyzed radical cross-coupling reaction. In mechanistic biological experiments, armeniaspirol A exerted potent membrane depolarization, accounting for the pH-dependent antibiotic activity. Armeniaspirol A also disrupted the membrane potential and decreased oxygen consumption in mitochondria. In planar lipid bilayers and in unilamellar vesicles, armeniaspirol A transported protons across membranes in a protein-independent manner, demonstrating that armeniaspirol A acted as a protonophore. We provide evidence that this mechanism might account for the antibiotic activity of multiple chloropyrrole-containing natural products isolated from various origins that share a 4-acylphenol moiety coupled to chloropyrrole as a joint pharmacophore. We additionally describe an efflux-mediated mechanism of resistance against armeniaspirols. The Royal Society of Chemistry 2021-11-24 /pmc/articles/PMC8672772/ /pubmed/35024125 http://dx.doi.org/10.1039/d1sc04290d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Arisetti, Nanaji Fuchs, Hazel L. S. Coetzee, Janetta Orozco, Manuel Ruppelt, Dominik Bauer, Armin Heimann, Dominik Kuhnert, Eric Bhamidimarri, Satya P. Bafna, Jayesh A. Hinkelmann, Bettina Eckel, Konstantin Sieber, Stephan A. Müller, Peter P. Herrmann, Jennifer Müller, Rolf Winterhalter, Mathias Steinem, Claudia Brönstrup, Mark Total synthesis and mechanism of action of the antibiotic armeniaspirol A |
title | Total synthesis and mechanism of action of the antibiotic armeniaspirol A |
title_full | Total synthesis and mechanism of action of the antibiotic armeniaspirol A |
title_fullStr | Total synthesis and mechanism of action of the antibiotic armeniaspirol A |
title_full_unstemmed | Total synthesis and mechanism of action of the antibiotic armeniaspirol A |
title_short | Total synthesis and mechanism of action of the antibiotic armeniaspirol A |
title_sort | total synthesis and mechanism of action of the antibiotic armeniaspirol a |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672772/ https://www.ncbi.nlm.nih.gov/pubmed/35024125 http://dx.doi.org/10.1039/d1sc04290d |
work_keys_str_mv | AT arisettinanaji totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT fuchshazells totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT coetzeejanetta totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT orozcomanuel totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT ruppeltdominik totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT bauerarmin totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT heimanndominik totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT kuhnerteric totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT bhamidimarrisatyap totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT bafnajayesha totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT hinkelmannbettina totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT eckelkonstantin totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT sieberstephana totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT mullerpeterp totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT herrmannjennifer totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT mullerrolf totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT winterhaltermathias totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT steinemclaudia totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola AT bronstrupmark totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola |