Cargando…

Total synthesis and mechanism of action of the antibiotic armeniaspirol A

Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synt...

Descripción completa

Detalles Bibliográficos
Autores principales: Arisetti, Nanaji, Fuchs, Hazel L. S., Coetzee, Janetta, Orozco, Manuel, Ruppelt, Dominik, Bauer, Armin, Heimann, Dominik, Kuhnert, Eric, Bhamidimarri, Satya P., Bafna, Jayesh A., Hinkelmann, Bettina, Eckel, Konstantin, Sieber, Stephan A., Müller, Peter P., Herrmann, Jennifer, Müller, Rolf, Winterhalter, Mathias, Steinem, Claudia, Brönstrup, Mark
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672772/
https://www.ncbi.nlm.nih.gov/pubmed/35024125
http://dx.doi.org/10.1039/d1sc04290d
_version_ 1784615417459769344
author Arisetti, Nanaji
Fuchs, Hazel L. S.
Coetzee, Janetta
Orozco, Manuel
Ruppelt, Dominik
Bauer, Armin
Heimann, Dominik
Kuhnert, Eric
Bhamidimarri, Satya P.
Bafna, Jayesh A.
Hinkelmann, Bettina
Eckel, Konstantin
Sieber, Stephan A.
Müller, Peter P.
Herrmann, Jennifer
Müller, Rolf
Winterhalter, Mathias
Steinem, Claudia
Brönstrup, Mark
author_facet Arisetti, Nanaji
Fuchs, Hazel L. S.
Coetzee, Janetta
Orozco, Manuel
Ruppelt, Dominik
Bauer, Armin
Heimann, Dominik
Kuhnert, Eric
Bhamidimarri, Satya P.
Bafna, Jayesh A.
Hinkelmann, Bettina
Eckel, Konstantin
Sieber, Stephan A.
Müller, Peter P.
Herrmann, Jennifer
Müller, Rolf
Winterhalter, Mathias
Steinem, Claudia
Brönstrup, Mark
author_sort Arisetti, Nanaji
collection PubMed
description Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synthesis of (±) armeniaspirol A in six steps with a yield of 20.3% that includes the formation of the spirocycle through a copper-catalyzed radical cross-coupling reaction. In mechanistic biological experiments, armeniaspirol A exerted potent membrane depolarization, accounting for the pH-dependent antibiotic activity. Armeniaspirol A also disrupted the membrane potential and decreased oxygen consumption in mitochondria. In planar lipid bilayers and in unilamellar vesicles, armeniaspirol A transported protons across membranes in a protein-independent manner, demonstrating that armeniaspirol A acted as a protonophore. We provide evidence that this mechanism might account for the antibiotic activity of multiple chloropyrrole-containing natural products isolated from various origins that share a 4-acylphenol moiety coupled to chloropyrrole as a joint pharmacophore. We additionally describe an efflux-mediated mechanism of resistance against armeniaspirols.
format Online
Article
Text
id pubmed-8672772
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-86727722022-01-11 Total synthesis and mechanism of action of the antibiotic armeniaspirol A Arisetti, Nanaji Fuchs, Hazel L. S. Coetzee, Janetta Orozco, Manuel Ruppelt, Dominik Bauer, Armin Heimann, Dominik Kuhnert, Eric Bhamidimarri, Satya P. Bafna, Jayesh A. Hinkelmann, Bettina Eckel, Konstantin Sieber, Stephan A. Müller, Peter P. Herrmann, Jennifer Müller, Rolf Winterhalter, Mathias Steinem, Claudia Brönstrup, Mark Chem Sci Chemistry Emerging antimicrobial resistance urges the discovery of antibiotics with unexplored, resistance-breaking mechanisms. Armeniaspirols represent a novel class of antibiotics with a unique spiro[4.4]non-8-ene scaffold and potent activities against Gram-positive pathogens. We report a concise total synthesis of (±) armeniaspirol A in six steps with a yield of 20.3% that includes the formation of the spirocycle through a copper-catalyzed radical cross-coupling reaction. In mechanistic biological experiments, armeniaspirol A exerted potent membrane depolarization, accounting for the pH-dependent antibiotic activity. Armeniaspirol A also disrupted the membrane potential and decreased oxygen consumption in mitochondria. In planar lipid bilayers and in unilamellar vesicles, armeniaspirol A transported protons across membranes in a protein-independent manner, demonstrating that armeniaspirol A acted as a protonophore. We provide evidence that this mechanism might account for the antibiotic activity of multiple chloropyrrole-containing natural products isolated from various origins that share a 4-acylphenol moiety coupled to chloropyrrole as a joint pharmacophore. We additionally describe an efflux-mediated mechanism of resistance against armeniaspirols. The Royal Society of Chemistry 2021-11-24 /pmc/articles/PMC8672772/ /pubmed/35024125 http://dx.doi.org/10.1039/d1sc04290d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Arisetti, Nanaji
Fuchs, Hazel L. S.
Coetzee, Janetta
Orozco, Manuel
Ruppelt, Dominik
Bauer, Armin
Heimann, Dominik
Kuhnert, Eric
Bhamidimarri, Satya P.
Bafna, Jayesh A.
Hinkelmann, Bettina
Eckel, Konstantin
Sieber, Stephan A.
Müller, Peter P.
Herrmann, Jennifer
Müller, Rolf
Winterhalter, Mathias
Steinem, Claudia
Brönstrup, Mark
Total synthesis and mechanism of action of the antibiotic armeniaspirol A
title Total synthesis and mechanism of action of the antibiotic armeniaspirol A
title_full Total synthesis and mechanism of action of the antibiotic armeniaspirol A
title_fullStr Total synthesis and mechanism of action of the antibiotic armeniaspirol A
title_full_unstemmed Total synthesis and mechanism of action of the antibiotic armeniaspirol A
title_short Total synthesis and mechanism of action of the antibiotic armeniaspirol A
title_sort total synthesis and mechanism of action of the antibiotic armeniaspirol a
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672772/
https://www.ncbi.nlm.nih.gov/pubmed/35024125
http://dx.doi.org/10.1039/d1sc04290d
work_keys_str_mv AT arisettinanaji totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT fuchshazells totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT coetzeejanetta totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT orozcomanuel totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT ruppeltdominik totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT bauerarmin totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT heimanndominik totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT kuhnerteric totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT bhamidimarrisatyap totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT bafnajayesha totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT hinkelmannbettina totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT eckelkonstantin totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT sieberstephana totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT mullerpeterp totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT herrmannjennifer totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT mullerrolf totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT winterhaltermathias totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT steinemclaudia totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola
AT bronstrupmark totalsynthesisandmechanismofactionoftheantibioticarmeniaspirola