Cargando…
Novel small molecule inhibition of IKK/NF‐κB activation reduces markers of senescence and improves healthspan in mouse models of aging
Constitutive NF‐κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF‐κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF‐κB activation by disrupting the association between IKKβ...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672781/ https://www.ncbi.nlm.nih.gov/pubmed/34734460 http://dx.doi.org/10.1111/acel.13486 |
_version_ | 1784615419462549504 |
---|---|
author | Zhang, Lei Zhao, Jing Mu, Xiaodong McGowan, Sara J. Angelini, Luise O'Kelly, Ryan D. Yousefzadeh, Matthew J. Sakamoto, Ayumi Aversa, Zaira LeBrasseur, Nathan K. Suh, Yousin Huard, Johnny Kamenecka, Theodore M. Niedernhofer, Laura J. Robbins, Paul D. |
author_facet | Zhang, Lei Zhao, Jing Mu, Xiaodong McGowan, Sara J. Angelini, Luise O'Kelly, Ryan D. Yousefzadeh, Matthew J. Sakamoto, Ayumi Aversa, Zaira LeBrasseur, Nathan K. Suh, Yousin Huard, Johnny Kamenecka, Theodore M. Niedernhofer, Laura J. Robbins, Paul D. |
author_sort | Zhang, Lei |
collection | PubMed |
description | Constitutive NF‐κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF‐κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF‐κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic effects of SR12343 on senescence and aging in three different mouse models. SR12343 reduced senescence‐associated beta‐galactosidase (SA‐β‐gal) activity in oxidative stress‐induced senescent mouse embryonic fibroblasts as well as in etoposide‐induced senescent human IMR90 cells. Chronic administration of SR12343 to the Ercc1 (−/) (∆) and Zmpste24 (−/−) mouse models of accelerated aging reduced markers of cellular senescence and SASP and improved multiple parameters of aging. SR12343 also reduced markers of senescence and increased muscle fiber size in 2‐year‐old WT mice. Taken together, these results demonstrate that IKK/NF‐κB signaling pathway represents a promising target for reducing markers of cellular senescence, extending healthspan and treating age‐related diseases. |
format | Online Article Text |
id | pubmed-8672781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86727812021-12-22 Novel small molecule inhibition of IKK/NF‐κB activation reduces markers of senescence and improves healthspan in mouse models of aging Zhang, Lei Zhao, Jing Mu, Xiaodong McGowan, Sara J. Angelini, Luise O'Kelly, Ryan D. Yousefzadeh, Matthew J. Sakamoto, Ayumi Aversa, Zaira LeBrasseur, Nathan K. Suh, Yousin Huard, Johnny Kamenecka, Theodore M. Niedernhofer, Laura J. Robbins, Paul D. Aging Cell Original Papers Constitutive NF‐κB activation is associated with cellular senescence and stem cell dysfunction and rare variants in NF‐κB family members are enriched in centenarians. We recently identified a novel small molecule (SR12343) that inhibits IKK/NF‐κB activation by disrupting the association between IKKβ and NEMO. Here we investigated the therapeutic effects of SR12343 on senescence and aging in three different mouse models. SR12343 reduced senescence‐associated beta‐galactosidase (SA‐β‐gal) activity in oxidative stress‐induced senescent mouse embryonic fibroblasts as well as in etoposide‐induced senescent human IMR90 cells. Chronic administration of SR12343 to the Ercc1 (−/) (∆) and Zmpste24 (−/−) mouse models of accelerated aging reduced markers of cellular senescence and SASP and improved multiple parameters of aging. SR12343 also reduced markers of senescence and increased muscle fiber size in 2‐year‐old WT mice. Taken together, these results demonstrate that IKK/NF‐κB signaling pathway represents a promising target for reducing markers of cellular senescence, extending healthspan and treating age‐related diseases. John Wiley and Sons Inc. 2021-11-03 2021-12 /pmc/articles/PMC8672781/ /pubmed/34734460 http://dx.doi.org/10.1111/acel.13486 Text en © 2021 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Zhang, Lei Zhao, Jing Mu, Xiaodong McGowan, Sara J. Angelini, Luise O'Kelly, Ryan D. Yousefzadeh, Matthew J. Sakamoto, Ayumi Aversa, Zaira LeBrasseur, Nathan K. Suh, Yousin Huard, Johnny Kamenecka, Theodore M. Niedernhofer, Laura J. Robbins, Paul D. Novel small molecule inhibition of IKK/NF‐κB activation reduces markers of senescence and improves healthspan in mouse models of aging |
title | Novel small molecule inhibition of IKK/NF‐κB activation reduces markers of senescence and improves healthspan in mouse models of aging |
title_full | Novel small molecule inhibition of IKK/NF‐κB activation reduces markers of senescence and improves healthspan in mouse models of aging |
title_fullStr | Novel small molecule inhibition of IKK/NF‐κB activation reduces markers of senescence and improves healthspan in mouse models of aging |
title_full_unstemmed | Novel small molecule inhibition of IKK/NF‐κB activation reduces markers of senescence and improves healthspan in mouse models of aging |
title_short | Novel small molecule inhibition of IKK/NF‐κB activation reduces markers of senescence and improves healthspan in mouse models of aging |
title_sort | novel small molecule inhibition of ikk/nf‐κb activation reduces markers of senescence and improves healthspan in mouse models of aging |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8672781/ https://www.ncbi.nlm.nih.gov/pubmed/34734460 http://dx.doi.org/10.1111/acel.13486 |
work_keys_str_mv | AT zhanglei novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT zhaojing novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT muxiaodong novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT mcgowansaraj novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT angeliniluise novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT okellyryand novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT yousefzadehmatthewj novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT sakamotoayumi novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT aversazaira novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT lebrasseurnathank novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT suhyousin novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT huardjohnny novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT kameneckatheodorem novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT niedernhoferlauraj novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging AT robbinspauld novelsmallmoleculeinhibitionofikknfkbactivationreducesmarkersofsenescenceandimproveshealthspaninmousemodelsofaging |