Cargando…
Predicting Breast Cancer Gene Expression Signature by Applying Deep Convolutional Neural Networks From Unannotated Pathological Images
We proposed a highly versatile two-step transfer learning pipeline for predicting the gene signature defining the intrinsic breast cancer subtypes using unannotated pathological images. Deciphering breast cancer molecular subtypes by deep learning approaches could provide a convenient and efficient...
Autores principales: | Phan, Nam Nhut, Huang, Chi-Cheng, Tseng, Ling-Ming, Chuang, Eric Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8673486/ https://www.ncbi.nlm.nih.gov/pubmed/34926274 http://dx.doi.org/10.3389/fonc.2021.769447 |
Ejemplares similares
-
Prediction of Breast Cancer Recurrence Using a Deep Convolutional Neural Network Without Region-of-Interest Labeling
por: Phan, Nam Nhut, et al.
Publicado: (2021) -
Comparative analysis of neural transcriptomes and functional implication of unannotated intronic expression
por: Sun, Yazhou, et al.
Publicado: (2011) -
Fusing hand-crafted and deep-learning features in a convolutional neural network model to identify prostate cancer in pathology images
por: Huang, Xinrui, et al.
Publicado: (2022) -
Identification of Unannotated Small Genes in Salmonella
por: Baek, Jonghwan, et al.
Publicado: (2017) -
A system based on deep convolutional neural network improves the detection of early gastric cancer
por: Feng, Jie, et al.
Publicado: (2022)