Cargando…
On Hallucinations in Tomographic Image Reconstruction
Tomographic image reconstruction is generally an ill-posed linear inverse problem. Such ill-posed inverse problems are typically regularized using prior knowledge of the sought-after object property. Recently, deep neural networks have been actively investigated for regularizing image reconstruction...
Autores principales: | Bhadra, Sayantan, Kelkar, Varun A., Brooks, Frank J., Anastasio, Mark A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8673588/ https://www.ncbi.nlm.nih.gov/pubmed/33950837 http://dx.doi.org/10.1109/TMI.2021.3077857 |
Ejemplares similares
-
Learning stochastic object models from medical imaging measurements by use of advanced ambient generative adversarial networks
por: Zhou, Weimin, et al.
Publicado: (2022) -
Assessing the Ability of Generative Adversarial Networks to Learn Canonical Medical Image Statistics
por: Kelkar, Varun A., et al.
Publicado: (2023) -
Impact of deep learning-based image super-resolution on binary signal detection
por: Zhang, Xiaohui, et al.
Publicado: (2021) -
Image reconstruction for a rotating positron tomograph
por: Townsend, D, et al.
Publicado: (1982) -
Synergistic tomographic image reconstruction: part 2
por: Tsoumpas, Charalampos, et al.
Publicado: (2021)