Cargando…
A machine learning pipeline for classification of cetacean echolocation clicks in large underwater acoustic datasets
Machine learning algorithms, including recent advances in deep learning, are promising for tools for detection and classification of broadband high frequency signals in passive acoustic recordings. However, these methods are generally data-hungry and progress has been limited by challenges related t...
Autor principal: | Frasier, Kaitlin E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8673644/ https://www.ncbi.nlm.nih.gov/pubmed/34860825 http://dx.doi.org/10.1371/journal.pcbi.1009613 |
Ejemplares similares
-
Automated classification of dolphin echolocation click types from the Gulf of Mexico
por: Frasier, Kaitlin E., et al.
Publicado: (2017) -
Discriminating and classifying odontocete echolocation clicks in the Hawaiian Islands using machine learning methods
por: Ziegenhorn, Morgan A., et al.
Publicado: (2022) -
Identification of western North Atlantic odontocete echolocation click types using machine learning and spatiotemporal correlates
por: Cohen, Rebecca E., et al.
Publicado: (2022) -
Acoustic differentiation and classification of wild belugas and narwhals using echolocation clicks
por: Zahn, Marie J., et al.
Publicado: (2021) -
Cetacean distribution models based on visual and passive acoustic data
por: Frasier, Kaitlin E., et al.
Publicado: (2021)