Cargando…
A novel ensemble fuzzy classification model in SARS-CoV-2 B-cell epitope identification for development of protein-based vaccine
B-cell epitope prediction research has received growing interest since the development of the first method. B-cell epitope identification with the aid of an accurate prediction method is one of the most important steps in epitope-based vaccine development, immunodiagnostic testing, antibody producti...
Autores principales: | Ozger, Zeynep Banu, Cihan, Pınar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8673934/ https://www.ncbi.nlm.nih.gov/pubmed/34931117 http://dx.doi.org/10.1016/j.asoc.2021.108280 |
Ejemplares similares
-
A new approach for determining SARS-CoV-2 epitopes using machine learning-based in silico methods
por: Cihan, Pınar, et al.
Publicado: (2022) -
A robust protein language model for SARS-CoV-2 protein–protein interaction network prediction
por: Ozger, Zeynep Banu
Publicado: (2023) -
Vaccine Design from the Ensemble of Surface Glycoprotein Epitopes of SARS-CoV-2: An Immunoinformatics Approach
por: Rahman, Noor, et al.
Publicado: (2020) -
Ensemble Machine Learning Model to Predict SARS-CoV-2 T-Cell Epitopes as Potential Vaccine Targets
por: Bukhari, Syed Nisar Hussain, et al.
Publicado: (2021) -
Ensemble-based, glycan-dependent epitope analysis of SARS-CoV-2 spike protein
por: Chen, Tianle, et al.
Publicado: (2022)