Cargando…
One-Step Robust Low-Rank Subspace Segmentation for Tumor Sample Clustering
Clustering of tumor samples can help identify cancer types and discover new cancer subtypes, which is essential for effective cancer treatment. Although many traditional clustering methods have been proposed for tumor sample clustering, advanced algorithms with better performance are still needed. L...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674076/ https://www.ncbi.nlm.nih.gov/pubmed/34925501 http://dx.doi.org/10.1155/2021/9990297 |
Sumario: | Clustering of tumor samples can help identify cancer types and discover new cancer subtypes, which is essential for effective cancer treatment. Although many traditional clustering methods have been proposed for tumor sample clustering, advanced algorithms with better performance are still needed. Low-rank subspace clustering is a popular algorithm in recent years. In this paper, we propose a novel one-step robust low-rank subspace segmentation method (ORLRS) for clustering the tumor sample. For a gene expression data set, we seek its lowest rank representation matrix and the noise matrix. By imposing the discrete constraint on the low-rank matrix, without performing spectral clustering, ORLRS learns the cluster indicators of subspaces directly, i.e., performing the clustering task in one step. To improve the robustness of the method, capped norm is adopted to remove the extreme data outliers in the noise matrix. Furthermore, we conduct an efficient solution to solve the problem of ORLRS. Experiments on several tumor gene expression data demonstrate the effectiveness of ORLRS. |
---|