Cargando…
One-Step Robust Low-Rank Subspace Segmentation for Tumor Sample Clustering
Clustering of tumor samples can help identify cancer types and discover new cancer subtypes, which is essential for effective cancer treatment. Although many traditional clustering methods have been proposed for tumor sample clustering, advanced algorithms with better performance are still needed. L...
Autores principales: | Liu, Jian, Cheng, Yuhu, Wang, Xuesong, Ge, Shuguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674076/ https://www.ncbi.nlm.nih.gov/pubmed/34925501 http://dx.doi.org/10.1155/2021/9990297 |
Ejemplares similares
-
Non-Convex Sparse and Low-Rank Based Robust Subspace Segmentation for Data Mining
por: Cheng, Wenlong, et al.
Publicado: (2017) -
Cancer Subtype Recognition Based on Laplacian Rank Constrained Multiview Clustering
por: Ge, Shuguang, et al.
Publicado: (2021) -
Identifying Subspace Gene Clusters from Microarray Data Using Low-Rank Representation
por: Cui, Yan, et al.
Publicado: (2013) -
LogDet Rank Minimization with Application to Subspace Clustering
por: Kang, Zhao, et al.
Publicado: (2015) -
Robust auto-weighted multi-view subspace clustering with common subspace representation matrix
por: Zhuge, Wenzhang, et al.
Publicado: (2017)