Cargando…
Discovering spatial-temporal patterns via complex networks in investigating COVID-19 pandemic in the United States
A novel approach combining time series analysis and complex network theory is proposed to deeply explore characteristics of the COVID-19 pandemic in some parts of the United States (US). It merges as a new way to provide a systematic view and complementary information of COVID-19 progression in the...
Autores principales: | Pan, Yue, Zhang, Limao, Unwin, Juliette, Skibniewski, Miroslaw J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674122/ https://www.ncbi.nlm.nih.gov/pubmed/34931157 http://dx.doi.org/10.1016/j.scs.2021.103508 |
Ejemplares similares
-
Discovering optimal strategies for mitigating COVID-19 spread using machine learning: Experience from Asia
por: Pan, Yue, et al.
Publicado: (2021) -
1607. Temporal Patterns and Spatial Synchrony in Pertussis Incidence—the United States, 2000–2017
por: Reese, Heather, et al.
Publicado: (2019) -
An investigation of spatial-temporal patterns and predictions of the coronavirus 2019 pandemic in Colombia, 2020–2021
por: Tariq, Amna, et al.
Publicado: (2022) -
Revealing the spatial shifting pattern of COVID-19 pandemic in the United States
por: Zhu, Di, et al.
Publicado: (2021) -
Promising hollow multi-shelled structures: discovering the temporal-spatial ordering
por: Amal, Rose
Publicado: (2020)