Cargando…
Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations
Artificial intelligence (AI) systems have increasingly achieved expert-level performance in medical imaging applications. However, there is growing concern that such AI systems may reflect and amplify human bias, and reduce the quality of their performance in historically under-served populations su...
Autores principales: | Seyyed-Kalantari, Laleh, Zhang, Haoran, McDermott, Matthew B. A., Chen, Irene Y., Ghassemi, Marzyeh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674135/ https://www.ncbi.nlm.nih.gov/pubmed/34893776 http://dx.doi.org/10.1038/s41591-021-01595-0 |
Ejemplares similares
-
Mitigating the impact of biased artificial intelligence in emergency decision-making
por: Adam, Hammaad, et al.
Publicado: (2022) -
Underdiagnosis of silicosis revealed by reinterpretation of chest radiographs in Thai ceramic workers
por: Chansaengpetch, Supakorn, et al.
Publicado: (2023) -
Hospital-wide survey of clinical experience with artificial intelligence applied to daily chest radiographs
por: Shin, Hyun Joo, et al.
Publicado: (2023) -
Association of Artificial Intelligence–Aided Chest Radiograph Interpretation With Reader Performance and Efficiency
por: Ahn, Jong Seok, et al.
Publicado: (2022) -
Artificial Intelligence-Based Detection of Pneumonia in Chest Radiographs
por: Becker, Judith, et al.
Publicado: (2022)