Cargando…

Frequency domain maximum correntropy criterion spline adaptive filtering

A filtering algorithm based on frequency domain spline type, frequency domain spline adaptive filters (FDSAF), effectively reducing the computational complexity of the filter. However, the FDSAF algorithm is unable to suppress non-Gaussian impulsive noises. To suppression non-Gaussian impulsive nois...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Wenyan, Zhi, Yongfeng, Feng, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674278/
https://www.ncbi.nlm.nih.gov/pubmed/34911969
http://dx.doi.org/10.1038/s41598-021-01863-6
Descripción
Sumario:A filtering algorithm based on frequency domain spline type, frequency domain spline adaptive filters (FDSAF), effectively reducing the computational complexity of the filter. However, the FDSAF algorithm is unable to suppress non-Gaussian impulsive noises. To suppression non-Gaussian impulsive noises along with having comparable operation time, a maximum correntropy criterion (MCC) based frequency domain spline adaptive filter called frequency domain maximum correntropy criterion spline adaptive filter (FDSAF-MCC) is developed in this paper. Further, the bound on learning rate for convergence of the proposed algorithm is also studied. And through experimental simulations verify the effectiveness of the proposed algorithm in suppressing non-Gaussian impulsive noises. Compared with the existing frequency domain spline adaptive filter, the proposed algorithm has better performance.