Cargando…

Gut bacterial tyrosine decarboxylase associates with clinical variables in a longitudinal cohort study of Parkinsons disease

Gut microbiota influences the clinical response of a wide variety of orally administered drugs. However, the underlying mechanisms through which drug–microbiota interactions occur are still obscure. Previously, we reported that tyrosine decarboxylating (TDC) bacteria may restrict the levels of levod...

Descripción completa

Detalles Bibliográficos
Autores principales: van Kessel, Sebastiaan P., Auvinen, Petri, Scheperjans, Filip, El Aidy, Sahar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674283/
https://www.ncbi.nlm.nih.gov/pubmed/34911958
http://dx.doi.org/10.1038/s41531-021-00260-0
Descripción
Sumario:Gut microbiota influences the clinical response of a wide variety of orally administered drugs. However, the underlying mechanisms through which drug–microbiota interactions occur are still obscure. Previously, we reported that tyrosine decarboxylating (TDC) bacteria may restrict the levels of levodopa reaching circulation in patients with Parkinson’s disease (PD). We observed a significant positive association between disease duration and the abundance of the bacterial tdc-gene. The question arises whether increased exposure to anti-PD medication could affect the abundance of bacterial TDC, to ultimately impact drug efficacy. To this end, we investigated the potential association between anti-PD drug exposure and bacterial tdc-gene abundance over a period of 2 years in a longitudinal cohort of PD patients and healthy controls. Our data reveal significant associations between tdc-gene abundance, several anti-PD medications, including entacapone, rasagiline, pramipexole, and ropinirole but not levodopa, and gastrointestinal symptoms, warranting further research on the effect of anti-PD medication on microbial changes and gastrointestinal function.