Cargando…
Machine learning assisted optimization of blending process of polyphenylene sulfide with elastomer using high speed twin screw extruder
Random forest regression was applied to optimize the melt-blending process of polyphenylene sulfide (PPS) with poly(ethylene-glycidyl methacrylate-methyl acrylate) (E-GMA-MA) elastomer to improve the Charpy impact strength. A training dataset was constructed using four elastomers with different GMA...
Autores principales: | Takada, Shingo, Suzuki, Toru, Takebayashi, Yoshihiro, Ono, Takumi, Yoda, Satoshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674312/ https://www.ncbi.nlm.nih.gov/pubmed/34911974 http://dx.doi.org/10.1038/s41598-021-03513-3 |
Ejemplares similares
-
Transparent PC/PMMA Blends Via Reactive Compatibilization in a Twin-Screw Extruder
por: Bubmann, Tobias, et al.
Publicado: (2019) -
Investigation of the Properties of Polyphenylene Sulfone Blends
por: Slonov, Azamat, et al.
Publicado: (2022) -
Polypropylene Degradation on Co-Rotating Twin-Screw Extruders
por: Altepeter, Matthias, et al.
Publicado: (2023) -
The Role of Calender Gap in Barrel and Screw Wear in Counterrotating Twin Screw Extruders
por: Demirci, Abdullah, et al.
Publicado: (2021) -
Average Shear Rates in the Screw Elements of a Corotating Twin-Screw Extruder
por: Vergnes, Bruno
Publicado: (2021)