Cargando…
TiMEG: an integrative statistical method for partially missing multi-omics data
Multi-omics data integration is widely used to understand the genetic architecture of disease. In multi-omics association analysis, data collected on multiple omics for the same set of individuals are immensely important for biomarker identification. But when the sample size of such data is limited,...
Autores principales: | Das, Sarmistha, Mukhopadhyay, Indranil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674330/ https://www.ncbi.nlm.nih.gov/pubmed/34911979 http://dx.doi.org/10.1038/s41598-021-03034-z |
Ejemplares similares
-
Multi-session statistics on beamformed MEG data()
por: Luckhoo, Henry T., et al.
Publicado: (2014) -
NEMO: cancer subtyping by integration of partial multi-omic data
por: Rappoport, Nimrod, et al.
Publicado: (2019) -
Missing data in multi-omics integration: Recent advances through artificial intelligence
por: Flores, Javier E., et al.
Publicado: (2023) -
Editorial: Statistical and Computational Methods for Microbiome Multi-Omics Data
por: Mallick, Himel, et al.
Publicado: (2020) -
SMGR: a joint statistical method for integrative analysis of single-cell multi-omics data
por: Song, Qianqian, et al.
Publicado: (2022)