Cargando…
Identification of Feline Foamy Virus-derived MicroRNAs
MicroRNAs (miRNAs) classified as non-coding RNAs regulate various metabolic systems and viral life cycles. To date, numerous DNA viruses, many of which are members of the herpesvirus family, and a relatively small number of RNA viruses, including retroviruses, have been reported to encode and expres...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674446/ https://www.ncbi.nlm.nih.gov/pubmed/34776460 http://dx.doi.org/10.1264/jsme2.ME21055 |
Sumario: | MicroRNAs (miRNAs) classified as non-coding RNAs regulate various metabolic systems and viral life cycles. To date, numerous DNA viruses, many of which are members of the herpesvirus family, and a relatively small number of RNA viruses, including retroviruses, have been reported to encode and express miRNAs in infected cells. A few retroviruses have been shown to express miRNAs, and foamy viruses (FVs) were initially predicted by computational analyses to possess miRNA-coding regions. Subsequent studies on simian and bovine FVs confirmed the presence of functional and biologically active miRNA expression cassettes. We herein identified feline FV-derived miRNAs using a small RNA deep sequencing analysis. We confirmed their repressive functions on gene expression by dual-luciferase reporter assays. We found that the seed sequences of the miRNAs identified in the present study were conserved among all previously reported FFV isolates. These results suggest that FFV-derived miRNAs play a pivotal role in FFV infection. |
---|