Cargando…

Identification of Feline Foamy Virus-derived MicroRNAs

MicroRNAs (miRNAs) classified as non-coding RNAs regulate various metabolic systems and viral life cycles. To date, numerous DNA viruses, many of which are members of the herpesvirus family, and a relatively small number of RNA viruses, including retroviruses, have been reported to encode and expres...

Descripción completa

Detalles Bibliográficos
Autores principales: Aso, Shiro, Kitao, Koichi, Hashimoto-Gotoh, Akira, Sakaguchi, Shoichi, Miyazawa, Takayuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674446/
https://www.ncbi.nlm.nih.gov/pubmed/34776460
http://dx.doi.org/10.1264/jsme2.ME21055
Descripción
Sumario:MicroRNAs (miRNAs) classified as non-coding RNAs regulate various metabolic systems and viral life cycles. To date, numerous DNA viruses, many of which are members of the herpesvirus family, and a relatively small number of RNA viruses, including retroviruses, have been reported to encode and express miRNAs in infected cells. A few retroviruses have been shown to express miRNAs, and foamy viruses (FVs) were initially predicted by computational analyses to possess miRNA-coding regions. Subsequent studies on simian and bovine FVs confirmed the presence of functional and biologically active miRNA expression cassettes. We herein identified feline FV-derived miRNAs using a small RNA deep sequencing ana­lysis. We confirmed their repressive functions on gene expression by dual-luciferase reporter assays. We found that the seed sequences of the miRNAs identified in the present study were conserved among all previously reported FFV isolates. These results suggest that FFV-derived miRNAs play a pivotal role in FFV infection.