Cargando…

Pesticide residues in Rita rita and Cyprinus carpio from river Ganga, India, and assessment of human health risk

Present study was carried out to determine the concentration and bioaccumulation of pesticide residues in two commonly edible fishes: bagrid fish, Rita rita and common carp, Cyprinus carpio collected from river Ganga at Narora, India. The human health risk via consumption of these fishes was also as...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Zeshan Umar, Parveen, Saltanat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674587/
https://www.ncbi.nlm.nih.gov/pubmed/34956839
http://dx.doi.org/10.1016/j.toxrep.2021.08.013
Descripción
Sumario:Present study was carried out to determine the concentration and bioaccumulation of pesticide residues in two commonly edible fishes: bagrid fish, Rita rita and common carp, Cyprinus carpio collected from river Ganga at Narora, India. The human health risk via consumption of these fishes was also assessed. The n-hexane extract of the muscle tissues was characterized by gas chromatography coupled to mass spectrometry and quantified by electron capture detector for pesticide residues. Bioaccumulation factor (BAF) in bagrid fish for detected pesticides was found to be higher than those in common carp. Estimated daily intake (EDI) values in our study were insignificantly higher than Average daily intake (ADI) values. Target hazard quotient (THQ) via consumption of selected fishes was found to be lower than the set 1.0, inferring non-carcinogenic risk. With regard to contaminants carcinogenic effects the total risk ratio (R) values of each pesticide was found lower than threshold risk limit except of heptachlor which indicates carcinogenic risk. The results justify pesticide pollution in river Ganga at Narora and thus more attention is required in order to help improve the health status of this ecosystem and reduce contamination of fishes.