Cargando…

Broadband surface plasmon resonance sensor for fast spectroscopic photoacoustic microscopy

High-speed optical-resolution photoacoustic microscopy (OR-PAM), integrating the merits of high spatial resolution and fast imaging acquisition, can observe dynamic processes of the optical absorption-based molecular specificities. However, it remains challenging for the evaluation to morphological...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Fan, Guo, Guangdi, Zheng, Shanguang, Fang, Hui, Min, Changjun, Song, Wei, Yuan, Xiaocong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674647/
https://www.ncbi.nlm.nih.gov/pubmed/34956832
http://dx.doi.org/10.1016/j.pacs.2021.100305
Descripción
Sumario:High-speed optical-resolution photoacoustic microscopy (OR-PAM), integrating the merits of high spatial resolution and fast imaging acquisition, can observe dynamic processes of the optical absorption-based molecular specificities. However, it remains challenging for the evaluation to morphological and physiological parameters that are closely associated with photoacoustic spectrum due to the inadequate ultrasonic frequency response of the routinely-employed piezoelectric transducer. By utilizing the galvanometer for fast optical scanning and our previously-developed surface plasmon resonance sensor as an unfocused broadband ultrasonic detector, high-speed spectroscopic photoacoustic imaging was accessed in the OR-PAM system, achieving an acoustic bandwidth of ∼125 MHz and B-scan rate at ∼200 Hz over a scanning range of ∼0.5 mm. Our system demonstrated the dynamic imaging of the moving phantoms’ structures and the simultaneous characterization of their photoacoustic spectra over time. Further, fast volumetric imaging and spectroscopic analysis of microanatomic features of a zebrafish eye ex vivo was obtained label-freely.