Cargando…
Deep Learning for Reconstructing Low-Quality FTIR and Raman Spectra—A Case Study in Microplastic Analyses
[Image: see text] Herein we report on a deep-learning method for the removal of instrumental noise and unwanted spectral artifacts in Fourier transform infrared (FTIR) or Raman spectra, especially in automated applications in which a large number of spectra have to be acquired within limited time. A...
Autores principales: | Brandt, Josef, Mattsson, Karin, Hassellöv, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674871/ https://www.ncbi.nlm.nih.gov/pubmed/34807556 http://dx.doi.org/10.1021/acs.analchem.1c02618 |
Ejemplares similares
-
Comparison of pre-treatment methods and heavy density liquids to optimize microplastic extraction from natural marine sediments
por: Mattsson, Karin, et al.
Publicado: (2022) -
It matters how we measure - Quantification of microplastics in drinking water by μFTIR and μRaman
por: Maurizi, L., et al.
Publicado: (2023) -
Unraveling the Marine
Microplastic Cycle: The First
Simultaneous Data Set for Air, Sea Surface Microlayer, and Underlying
Water
por: Goßmann, Isabel, et al.
Publicado: (2023) -
The pretreatment method in marine organisms and sediment for microplastics analysis by FTIR using “Cylindrical microplastics fractionator”
por: Tanoiri, Hiraku, et al.
Publicado: (2023) -
Raman spectra‐based deep learning: A tool to identify microbial contamination
por: Maruthamuthu, Murali K., et al.
Publicado: (2020)