Cargando…
From Centroided to Profile Mode: Machine Learning for Prediction of Peak Width in HRMS Data
[Image: see text] Centroiding is one of the major approaches used for size reduction of the data generated by high-resolution mass spectrometry. During centroiding, performed either during acquisition or as a pre-processing step, the mass profiles are represented by a single value (i.e., the centroi...
Autores principales: | Samanipour, Saer, Choi, Phil, O’Brien, Jake W., Pirok, Bob W. J., Reid, Malcolm J., Thomas, Kevin V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674881/ https://www.ncbi.nlm.nih.gov/pubmed/34843646 http://dx.doi.org/10.1021/acs.analchem.1c03755 |
Ejemplares similares
-
Critical
Assessment of the Chemical Space Covered
by LC–HRMS Non-Targeted Analysis
por: Hulleman, Tobias, et al.
Publicado: (2023) -
Cumulative
Neutral Loss Model for Fragment Deconvolution
in Electrospray Ionization High-Resolution Mass Spectrometry Data
por: van Herwerden, Denice, et al.
Publicado: (2023) -
From Molecular Descriptors
to Intrinsic Fish Toxicity
of Chemicals: An Alternative Approach to Chemical Prioritization
por: Samanipour, Saer, et al.
Publicado: (2022) -
Automated Feature Mining for Two-Dimensional Liquid
Chromatography Applied to Polymers Enabled by Mass Remainder Analysis
por: Molenaar, Stef R.A., et al.
Publicado: (2022) -
Social, demographic, and economic correlates of food and chemical consumption measured by wastewater-based epidemiology
por: Choi, Phil M., et al.
Publicado: (2019)