Cargando…

HACC-Based Nanoscale Delivery of the NbMLP28 Plasmid as a Crop Protection Strategy for Viral Diseases

[Image: see text] Resistant genes as an effective strategy to antivirus of plants are at the core of sustainability efforts. We use the antiviral protein major latex protein 28 (NbMLP28 plasmid) and N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) designated as the HACC/NbMLP28 complex...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Daoshun, Song, Liyun, Lin, Zhonglong, Huang, Kun, Liu, Chunming, Wang, Yong, Liu, Dongyang, Zhang, Songbai, Yang, Jinguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8674983/
https://www.ncbi.nlm.nih.gov/pubmed/34926942
http://dx.doi.org/10.1021/acsomega.1c05295
Descripción
Sumario:[Image: see text] Resistant genes as an effective strategy to antivirus of plants are at the core of sustainability efforts. We use the antiviral protein major latex protein 28 (NbMLP28 plasmid) and N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) designated as the HACC/NbMLP28 complex as protective gene delivery vectors to prepare nanonucleic acid drugs. The maximum drug loading capacity of HACC was 4. The particle size of HACC/NbMLP28 was measured by transmission electron microscopy and found to be approximately 40–120 nm, the particle dispersion index (PDI) was 0.448, and the ζ-potential was 22.3 mV. This facilitates its ability to deliver particles. Different controls of laser scanning confocal experiments verified the effective expression of NbMLP28 and the feasibility of nanodelivery. The optimal ratio of HACC/plasmid was 2:1. Finally, the nanoparticle/plasmid complex was tested for its ability to control diseases and was found to significantly improve resistance to three viruses. The enhanced resistance was particularly notable 4 days after inoculation. Taken together, these results indicate that HACC/NbMLP28 is a promising tool to treat plant viruses. To the best of our knowledge, this is the first study that successfully delivered and expressed antiviral protein particles in plants. This gene delivery system can effectively load antiviral plasmids and express them in plant leaves, significantly affecting the plant resistance of three RNA viruses.