Cargando…
Hypoglycemic and Hypolipidemic Effects of Malonyl Ginsenosides from American Ginseng (Panax quinquefolius L.) on Type 2 Diabetic Mice
[Image: see text] American ginseng (Panax quinquefolius L.) is popularly consumed as traditional herbal medicine and health food for the treatment of type 2 diabetes mellitus (T2DM). Malonyl ginsenosides (MGR) are the main natural ginsenosides in American ginseng. However, whether the malonyl ginsen...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675029/ https://www.ncbi.nlm.nih.gov/pubmed/34926913 http://dx.doi.org/10.1021/acsomega.1c04656 |
Sumario: | [Image: see text] American ginseng (Panax quinquefolius L.) is popularly consumed as traditional herbal medicine and health food for the treatment of type 2 diabetes mellitus (T2DM). Malonyl ginsenosides (MGR) are the main natural ginsenosides in American ginseng. However, whether the malonyl ginsenosides in P. quinquefolius (PQ-MGR) possess antidiabetic effects has not been explored yet. In this study, the antidiabetic effects and the underlying mechanism of PQ-MGR in high-fat diet/streptozotocin (HFD/STZ)-induced T2DM mice were investigated. The chemical composition was analyzed by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Our results showed that 14 malonyl ginsenosides were identified in the PQ-MGR. Among them, the content of m-Rb(1) represented about 77.4% of the total malonyl ginsenosides. After a 5-week experiment, the PQ-MGR significantly reduced the fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), nonesterified fatty acid (NEFA), alanine transaminase (ALT), and aspartate transaminase (AST) levels and improved glucose tolerance and insulin resistance. Furthermore, Western blot analysis demonstrated that the protein expressions of p-PI3K, p-AKT, p-AMPK, p-ACC, PPAR(γ), and GLUT4 in the liver and skeletal muscle were significantly upregulated after PQ-MGR treatment. In contrast, the protein expressions of p-IRS1 and p-JNK were significantly downregulated. Our results revealed that PQ-MGR could ameliorate glucose and lipid metabolism and insulin resistance in T2DM via regulation of the insulin receptor substrate-1/phosphoinositide3-kinase/protein-kinase B (IRS1/PI3K/Akt) and AMP-activated protein kinase/acetyl-CoA carboxylase (AMPK/ACC) pathways. These findings suggest that PQ-MGR may be used as an antidiabetic candidate drug for T2DM treatment. |
---|