Cargando…

Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE

[Image: see text] We demonstrate that fast and accurate linear force fields can be built for molecules using the atomic cluster expansion (ACE) framework. The ACE models parametrize the potential energy surface in terms of body-ordered symmetric polynomials making the functional form reminiscent of...

Descripción completa

Detalles Bibliográficos
Autores principales: Kovács, Dávid Péter, Oord, Cas van der, Kucera, Jiri, Allen, Alice E. A., Cole, Daniel J., Ortner, Christoph, Csányi, Gábor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675139/
https://www.ncbi.nlm.nih.gov/pubmed/34735161
http://dx.doi.org/10.1021/acs.jctc.1c00647
_version_ 1784615819210129408
author Kovács, Dávid Péter
Oord, Cas van der
Kucera, Jiri
Allen, Alice E. A.
Cole, Daniel J.
Ortner, Christoph
Csányi, Gábor
author_facet Kovács, Dávid Péter
Oord, Cas van der
Kucera, Jiri
Allen, Alice E. A.
Cole, Daniel J.
Ortner, Christoph
Csányi, Gábor
author_sort Kovács, Dávid Péter
collection PubMed
description [Image: see text] We demonstrate that fast and accurate linear force fields can be built for molecules using the atomic cluster expansion (ACE) framework. The ACE models parametrize the potential energy surface in terms of body-ordered symmetric polynomials making the functional form reminiscent of traditional molecular mechanics force fields. We show that the four- or five-body ACE force fields improve on the accuracy of the empirical force fields by up to a factor of 10, reaching the accuracy typical of recently proposed machine-learning-based approaches. We not only show state of the art accuracy and speed on the widely used MD17 and ISO17 benchmark data sets, but we also go beyond RMSE by comparing a number of ML and empirical force fields to ACE on more important tasks such as normal-mode prediction, high-temperature molecular dynamics, dihedral torsional profile prediction, and even bond breaking. We also demonstrate the smoothness, transferability, and extrapolation capabilities of ACE on a new challenging benchmark data set comprised of a potential energy surface of a flexible druglike molecule.
format Online
Article
Text
id pubmed-8675139
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-86751392021-12-17 Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE Kovács, Dávid Péter Oord, Cas van der Kucera, Jiri Allen, Alice E. A. Cole, Daniel J. Ortner, Christoph Csányi, Gábor J Chem Theory Comput [Image: see text] We demonstrate that fast and accurate linear force fields can be built for molecules using the atomic cluster expansion (ACE) framework. The ACE models parametrize the potential energy surface in terms of body-ordered symmetric polynomials making the functional form reminiscent of traditional molecular mechanics force fields. We show that the four- or five-body ACE force fields improve on the accuracy of the empirical force fields by up to a factor of 10, reaching the accuracy typical of recently proposed machine-learning-based approaches. We not only show state of the art accuracy and speed on the widely used MD17 and ISO17 benchmark data sets, but we also go beyond RMSE by comparing a number of ML and empirical force fields to ACE on more important tasks such as normal-mode prediction, high-temperature molecular dynamics, dihedral torsional profile prediction, and even bond breaking. We also demonstrate the smoothness, transferability, and extrapolation capabilities of ACE on a new challenging benchmark data set comprised of a potential energy surface of a flexible druglike molecule. American Chemical Society 2021-11-04 2021-12-14 /pmc/articles/PMC8675139/ /pubmed/34735161 http://dx.doi.org/10.1021/acs.jctc.1c00647 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Kovács, Dávid Péter
Oord, Cas van der
Kucera, Jiri
Allen, Alice E. A.
Cole, Daniel J.
Ortner, Christoph
Csányi, Gábor
Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE
title Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE
title_full Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE
title_fullStr Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE
title_full_unstemmed Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE
title_short Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE
title_sort linear atomic cluster expansion force fields for organic molecules: beyond rmse
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675139/
https://www.ncbi.nlm.nih.gov/pubmed/34735161
http://dx.doi.org/10.1021/acs.jctc.1c00647
work_keys_str_mv AT kovacsdavidpeter linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse
AT oordcasvander linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse
AT kucerajiri linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse
AT allenaliceea linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse
AT coledanielj linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse
AT ortnerchristoph linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse
AT csanyigabor linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse