Cargando…
Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE
[Image: see text] We demonstrate that fast and accurate linear force fields can be built for molecules using the atomic cluster expansion (ACE) framework. The ACE models parametrize the potential energy surface in terms of body-ordered symmetric polynomials making the functional form reminiscent of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675139/ https://www.ncbi.nlm.nih.gov/pubmed/34735161 http://dx.doi.org/10.1021/acs.jctc.1c00647 |
_version_ | 1784615819210129408 |
---|---|
author | Kovács, Dávid Péter Oord, Cas van der Kucera, Jiri Allen, Alice E. A. Cole, Daniel J. Ortner, Christoph Csányi, Gábor |
author_facet | Kovács, Dávid Péter Oord, Cas van der Kucera, Jiri Allen, Alice E. A. Cole, Daniel J. Ortner, Christoph Csányi, Gábor |
author_sort | Kovács, Dávid Péter |
collection | PubMed |
description | [Image: see text] We demonstrate that fast and accurate linear force fields can be built for molecules using the atomic cluster expansion (ACE) framework. The ACE models parametrize the potential energy surface in terms of body-ordered symmetric polynomials making the functional form reminiscent of traditional molecular mechanics force fields. We show that the four- or five-body ACE force fields improve on the accuracy of the empirical force fields by up to a factor of 10, reaching the accuracy typical of recently proposed machine-learning-based approaches. We not only show state of the art accuracy and speed on the widely used MD17 and ISO17 benchmark data sets, but we also go beyond RMSE by comparing a number of ML and empirical force fields to ACE on more important tasks such as normal-mode prediction, high-temperature molecular dynamics, dihedral torsional profile prediction, and even bond breaking. We also demonstrate the smoothness, transferability, and extrapolation capabilities of ACE on a new challenging benchmark data set comprised of a potential energy surface of a flexible druglike molecule. |
format | Online Article Text |
id | pubmed-8675139 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-86751392021-12-17 Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE Kovács, Dávid Péter Oord, Cas van der Kucera, Jiri Allen, Alice E. A. Cole, Daniel J. Ortner, Christoph Csányi, Gábor J Chem Theory Comput [Image: see text] We demonstrate that fast and accurate linear force fields can be built for molecules using the atomic cluster expansion (ACE) framework. The ACE models parametrize the potential energy surface in terms of body-ordered symmetric polynomials making the functional form reminiscent of traditional molecular mechanics force fields. We show that the four- or five-body ACE force fields improve on the accuracy of the empirical force fields by up to a factor of 10, reaching the accuracy typical of recently proposed machine-learning-based approaches. We not only show state of the art accuracy and speed on the widely used MD17 and ISO17 benchmark data sets, but we also go beyond RMSE by comparing a number of ML and empirical force fields to ACE on more important tasks such as normal-mode prediction, high-temperature molecular dynamics, dihedral torsional profile prediction, and even bond breaking. We also demonstrate the smoothness, transferability, and extrapolation capabilities of ACE on a new challenging benchmark data set comprised of a potential energy surface of a flexible druglike molecule. American Chemical Society 2021-11-04 2021-12-14 /pmc/articles/PMC8675139/ /pubmed/34735161 http://dx.doi.org/10.1021/acs.jctc.1c00647 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Kovács, Dávid Péter Oord, Cas van der Kucera, Jiri Allen, Alice E. A. Cole, Daniel J. Ortner, Christoph Csányi, Gábor Linear Atomic Cluster Expansion Force Fields for Organic Molecules: Beyond RMSE |
title | Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: Beyond RMSE |
title_full | Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: Beyond RMSE |
title_fullStr | Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: Beyond RMSE |
title_full_unstemmed | Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: Beyond RMSE |
title_short | Linear Atomic Cluster Expansion Force Fields for Organic
Molecules: Beyond RMSE |
title_sort | linear atomic cluster expansion force fields for organic
molecules: beyond rmse |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675139/ https://www.ncbi.nlm.nih.gov/pubmed/34735161 http://dx.doi.org/10.1021/acs.jctc.1c00647 |
work_keys_str_mv | AT kovacsdavidpeter linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse AT oordcasvander linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse AT kucerajiri linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse AT allenaliceea linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse AT coledanielj linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse AT ortnerchristoph linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse AT csanyigabor linearatomicclusterexpansionforcefieldsfororganicmoleculesbeyondrmse |