Cargando…
A novel unsupervised approach based on the hidden features of Deep Denoising Autoencoders for COVID-19 disease detection
Chest imaging can represent a powerful tool for detecting the Coronavirus disease 2019 (COVID-19). Among the available technologies, the chest Computed Tomography (CT) scan is an effective approach for reliable and early detection of the disease. However, it could be difficult to rapidly identify by...
Autores principales: | Scarpiniti, Michele, Sarv Ahrabi, Sima, Baccarelli, Enzo, Piazzo, Lorenzo, Momenzadeh, Alireza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675154/ https://www.ncbi.nlm.nih.gov/pubmed/34937995 http://dx.doi.org/10.1016/j.eswa.2021.116366 |
Ejemplares similares
-
Exploiting probability density function of deep convolutional autoencoders’ latent space for reliable COVID-19 detection on CT scans
por: Sarv Ahrabi, Sima, et al.
Publicado: (2022) -
How much BiGAN and CycleGAN-learned hidden features are effective for COVID-19 detection from CT images? A comparative study
por: Sarv Ahrabi, Sima, et al.
Publicado: (2022) -
Twinned Residual Auto-Encoder (TRAE)—A new DL architecture for denoising super-resolution and task-aware feature learning from COVID-19 CT images
por: Baccarelli, Enzo, et al.
Publicado: (2023) -
Association Analysis of Deep Genomic Features Extracted by Denoising Autoencoders in Breast Cancer
por: Liu, Qian, et al.
Publicado: (2019) -
Denoising Autoencoder-Based Feature Extraction to Robust SSVEP-Based BCIs
por: Chen, Yeou-Jiunn, et al.
Publicado: (2021)