Cargando…
A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database
We present a novel and computationally efficient method for the detection of meniscal tears in Magnetic Resonance Imaging (MRI) data. Our method is based on a Convolutional Neural Network (CNN) that operates on complete 3D MRI scans. Our approach detects the presence of meniscal tears in three anato...
Autores principales: | Tack, Alexander, Shestakov, Alexey, Lüdke, David, Zachow, Stefan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675251/ https://www.ncbi.nlm.nih.gov/pubmed/34926416 http://dx.doi.org/10.3389/fbioe.2021.747217 |
Ejemplares similares
-
Stable human cartilage progenitor cell line stimulates healing of meniscal tears and attenuates post-traumatic osteoarthritis
por: Desai, Salomi, et al.
Publicado: (2022) -
The Natural History of Medial Meniscal Root Tears: A Biomechanical and Clinical Case Perspective
por: Floyd, Edward R., et al.
Publicado: (2021) -
The role of biomaterials in the treatment of meniscal tears
por: Kean, Crystal O., et al.
Publicado: (2017) -
Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative
por: Tack, Alexander, et al.
Publicado: (2021) -
Transfer learning-assisted 3D deep learning models for knee osteoarthritis detection: Data from the osteoarthritis initiative
por: Yeoh, Pauline Shan Qing, et al.
Publicado: (2023)