Cargando…

Predicting alcohol dependence from multi‐site brain structural measures

To identify neuroimaging biomarkers of alcohol dependence (AD) from structural magnetic resonance imaging, it may be useful to develop classification models that are explicitly generalizable to unseen sites and populations. This problem was explored in a mega‐analysis of previously published dataset...

Descripción completa

Detalles Bibliográficos
Autores principales: Hahn, Sage, Mackey, Scott, Cousijn, Janna, Foxe, John J., Heinz, Andreas, Hester, Robert, Hutchinson, Kent, Kiefer, Falk, Korucuoglu, Ozlem, Lett, Tristram, Li, Chiang‐Shan R., London, Edythe, Lorenzetti, Valentina, Maartje, Luijten, Momenan, Reza, Orr, Catherine, Paulus, Martin, Schmaal, Lianne, Sinha, Rajita, Sjoerds, Zsuzsika, Stein, Dan J., Stein, Elliot, van Holst, Ruth J., Veltman, Dick, Walter, Henrik, Wiers, Reinout W., Yucel, Murat, Thompson, Paul M., Conrod, Patricia, Allgaier, Nicholas, Garavan, Hugh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675424/
https://www.ncbi.nlm.nih.gov/pubmed/33064342
http://dx.doi.org/10.1002/hbm.25248
_version_ 1784615869285924864
author Hahn, Sage
Mackey, Scott
Cousijn, Janna
Foxe, John J.
Heinz, Andreas
Hester, Robert
Hutchinson, Kent
Kiefer, Falk
Korucuoglu, Ozlem
Lett, Tristram
Li, Chiang‐Shan R.
London, Edythe
Lorenzetti, Valentina
Maartje, Luijten
Momenan, Reza
Orr, Catherine
Paulus, Martin
Schmaal, Lianne
Sinha, Rajita
Sjoerds, Zsuzsika
Stein, Dan J.
Stein, Elliot
van Holst, Ruth J.
Veltman, Dick
Walter, Henrik
Wiers, Reinout W.
Yucel, Murat
Thompson, Paul M.
Conrod, Patricia
Allgaier, Nicholas
Garavan, Hugh
author_facet Hahn, Sage
Mackey, Scott
Cousijn, Janna
Foxe, John J.
Heinz, Andreas
Hester, Robert
Hutchinson, Kent
Kiefer, Falk
Korucuoglu, Ozlem
Lett, Tristram
Li, Chiang‐Shan R.
London, Edythe
Lorenzetti, Valentina
Maartje, Luijten
Momenan, Reza
Orr, Catherine
Paulus, Martin
Schmaal, Lianne
Sinha, Rajita
Sjoerds, Zsuzsika
Stein, Dan J.
Stein, Elliot
van Holst, Ruth J.
Veltman, Dick
Walter, Henrik
Wiers, Reinout W.
Yucel, Murat
Thompson, Paul M.
Conrod, Patricia
Allgaier, Nicholas
Garavan, Hugh
author_sort Hahn, Sage
collection PubMed
description To identify neuroimaging biomarkers of alcohol dependence (AD) from structural magnetic resonance imaging, it may be useful to develop classification models that are explicitly generalizable to unseen sites and populations. This problem was explored in a mega‐analysis of previously published datasets from 2,034 AD and comparison participants spanning 27 sites curated by the ENIGMA Addiction Working Group. Data were grouped into a training set used for internal validation including 1,652 participants (692 AD, 24 sites), and a test set used for external validation with 382 participants (146 AD, 3 sites). An exploratory data analysis was first conducted, followed by an evolutionary search based feature selection to site generalizable and high performing subsets of brain measurements. Exploratory data analysis revealed that inclusion of case‐ and control‐only sites led to the inadvertent learning of site‐effects. Cross validation methods that do not properly account for site can drastically overestimate results. Evolutionary‐based feature selection leveraging leave‐one‐site‐out cross‐validation, to combat unintentional learning, identified cortical thickness in the left superior frontal gyrus and right lateral orbitofrontal cortex, cortical surface area in the right transverse temporal gyrus, and left putamen volume as final features. Ridge regression restricted to these features yielded a test‐set area under the receiver operating characteristic curve of 0.768. These findings evaluate strategies for handling multi‐site data with varied underlying class distributions and identify potential biomarkers for individuals with current AD.
format Online
Article
Text
id pubmed-8675424
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-86754242021-12-27 Predicting alcohol dependence from multi‐site brain structural measures Hahn, Sage Mackey, Scott Cousijn, Janna Foxe, John J. Heinz, Andreas Hester, Robert Hutchinson, Kent Kiefer, Falk Korucuoglu, Ozlem Lett, Tristram Li, Chiang‐Shan R. London, Edythe Lorenzetti, Valentina Maartje, Luijten Momenan, Reza Orr, Catherine Paulus, Martin Schmaal, Lianne Sinha, Rajita Sjoerds, Zsuzsika Stein, Dan J. Stein, Elliot van Holst, Ruth J. Veltman, Dick Walter, Henrik Wiers, Reinout W. Yucel, Murat Thompson, Paul M. Conrod, Patricia Allgaier, Nicholas Garavan, Hugh Hum Brain Mapp Research Articles To identify neuroimaging biomarkers of alcohol dependence (AD) from structural magnetic resonance imaging, it may be useful to develop classification models that are explicitly generalizable to unseen sites and populations. This problem was explored in a mega‐analysis of previously published datasets from 2,034 AD and comparison participants spanning 27 sites curated by the ENIGMA Addiction Working Group. Data were grouped into a training set used for internal validation including 1,652 participants (692 AD, 24 sites), and a test set used for external validation with 382 participants (146 AD, 3 sites). An exploratory data analysis was first conducted, followed by an evolutionary search based feature selection to site generalizable and high performing subsets of brain measurements. Exploratory data analysis revealed that inclusion of case‐ and control‐only sites led to the inadvertent learning of site‐effects. Cross validation methods that do not properly account for site can drastically overestimate results. Evolutionary‐based feature selection leveraging leave‐one‐site‐out cross‐validation, to combat unintentional learning, identified cortical thickness in the left superior frontal gyrus and right lateral orbitofrontal cortex, cortical surface area in the right transverse temporal gyrus, and left putamen volume as final features. Ridge regression restricted to these features yielded a test‐set area under the receiver operating characteristic curve of 0.768. These findings evaluate strategies for handling multi‐site data with varied underlying class distributions and identify potential biomarkers for individuals with current AD. John Wiley & Sons, Inc. 2020-10-16 /pmc/articles/PMC8675424/ /pubmed/33064342 http://dx.doi.org/10.1002/hbm.25248 Text en © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Hahn, Sage
Mackey, Scott
Cousijn, Janna
Foxe, John J.
Heinz, Andreas
Hester, Robert
Hutchinson, Kent
Kiefer, Falk
Korucuoglu, Ozlem
Lett, Tristram
Li, Chiang‐Shan R.
London, Edythe
Lorenzetti, Valentina
Maartje, Luijten
Momenan, Reza
Orr, Catherine
Paulus, Martin
Schmaal, Lianne
Sinha, Rajita
Sjoerds, Zsuzsika
Stein, Dan J.
Stein, Elliot
van Holst, Ruth J.
Veltman, Dick
Walter, Henrik
Wiers, Reinout W.
Yucel, Murat
Thompson, Paul M.
Conrod, Patricia
Allgaier, Nicholas
Garavan, Hugh
Predicting alcohol dependence from multi‐site brain structural measures
title Predicting alcohol dependence from multi‐site brain structural measures
title_full Predicting alcohol dependence from multi‐site brain structural measures
title_fullStr Predicting alcohol dependence from multi‐site brain structural measures
title_full_unstemmed Predicting alcohol dependence from multi‐site brain structural measures
title_short Predicting alcohol dependence from multi‐site brain structural measures
title_sort predicting alcohol dependence from multi‐site brain structural measures
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675424/
https://www.ncbi.nlm.nih.gov/pubmed/33064342
http://dx.doi.org/10.1002/hbm.25248
work_keys_str_mv AT hahnsage predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT mackeyscott predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT cousijnjanna predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT foxejohnj predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT heinzandreas predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT hesterrobert predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT hutchinsonkent predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT kieferfalk predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT korucuogluozlem predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT letttristram predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT lichiangshanr predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT londonedythe predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT lorenzettivalentina predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT maartjeluijten predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT momenanreza predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT orrcatherine predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT paulusmartin predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT schmaallianne predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT sinharajita predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT sjoerdszsuzsika predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT steindanj predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT steinelliot predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT vanholstruthj predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT veltmandick predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT walterhenrik predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT wiersreinoutw predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT yucelmurat predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT thompsonpaulm predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT conrodpatricia predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT allgaiernicholas predictingalcoholdependencefrommultisitebrainstructuralmeasures
AT garavanhugh predictingalcoholdependencefrommultisitebrainstructuralmeasures