Cargando…
Predicting alcohol dependence from multi‐site brain structural measures
To identify neuroimaging biomarkers of alcohol dependence (AD) from structural magnetic resonance imaging, it may be useful to develop classification models that are explicitly generalizable to unseen sites and populations. This problem was explored in a mega‐analysis of previously published dataset...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675424/ https://www.ncbi.nlm.nih.gov/pubmed/33064342 http://dx.doi.org/10.1002/hbm.25248 |
_version_ | 1784615869285924864 |
---|---|
author | Hahn, Sage Mackey, Scott Cousijn, Janna Foxe, John J. Heinz, Andreas Hester, Robert Hutchinson, Kent Kiefer, Falk Korucuoglu, Ozlem Lett, Tristram Li, Chiang‐Shan R. London, Edythe Lorenzetti, Valentina Maartje, Luijten Momenan, Reza Orr, Catherine Paulus, Martin Schmaal, Lianne Sinha, Rajita Sjoerds, Zsuzsika Stein, Dan J. Stein, Elliot van Holst, Ruth J. Veltman, Dick Walter, Henrik Wiers, Reinout W. Yucel, Murat Thompson, Paul M. Conrod, Patricia Allgaier, Nicholas Garavan, Hugh |
author_facet | Hahn, Sage Mackey, Scott Cousijn, Janna Foxe, John J. Heinz, Andreas Hester, Robert Hutchinson, Kent Kiefer, Falk Korucuoglu, Ozlem Lett, Tristram Li, Chiang‐Shan R. London, Edythe Lorenzetti, Valentina Maartje, Luijten Momenan, Reza Orr, Catherine Paulus, Martin Schmaal, Lianne Sinha, Rajita Sjoerds, Zsuzsika Stein, Dan J. Stein, Elliot van Holst, Ruth J. Veltman, Dick Walter, Henrik Wiers, Reinout W. Yucel, Murat Thompson, Paul M. Conrod, Patricia Allgaier, Nicholas Garavan, Hugh |
author_sort | Hahn, Sage |
collection | PubMed |
description | To identify neuroimaging biomarkers of alcohol dependence (AD) from structural magnetic resonance imaging, it may be useful to develop classification models that are explicitly generalizable to unseen sites and populations. This problem was explored in a mega‐analysis of previously published datasets from 2,034 AD and comparison participants spanning 27 sites curated by the ENIGMA Addiction Working Group. Data were grouped into a training set used for internal validation including 1,652 participants (692 AD, 24 sites), and a test set used for external validation with 382 participants (146 AD, 3 sites). An exploratory data analysis was first conducted, followed by an evolutionary search based feature selection to site generalizable and high performing subsets of brain measurements. Exploratory data analysis revealed that inclusion of case‐ and control‐only sites led to the inadvertent learning of site‐effects. Cross validation methods that do not properly account for site can drastically overestimate results. Evolutionary‐based feature selection leveraging leave‐one‐site‐out cross‐validation, to combat unintentional learning, identified cortical thickness in the left superior frontal gyrus and right lateral orbitofrontal cortex, cortical surface area in the right transverse temporal gyrus, and left putamen volume as final features. Ridge regression restricted to these features yielded a test‐set area under the receiver operating characteristic curve of 0.768. These findings evaluate strategies for handling multi‐site data with varied underlying class distributions and identify potential biomarkers for individuals with current AD. |
format | Online Article Text |
id | pubmed-8675424 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86754242021-12-27 Predicting alcohol dependence from multi‐site brain structural measures Hahn, Sage Mackey, Scott Cousijn, Janna Foxe, John J. Heinz, Andreas Hester, Robert Hutchinson, Kent Kiefer, Falk Korucuoglu, Ozlem Lett, Tristram Li, Chiang‐Shan R. London, Edythe Lorenzetti, Valentina Maartje, Luijten Momenan, Reza Orr, Catherine Paulus, Martin Schmaal, Lianne Sinha, Rajita Sjoerds, Zsuzsika Stein, Dan J. Stein, Elliot van Holst, Ruth J. Veltman, Dick Walter, Henrik Wiers, Reinout W. Yucel, Murat Thompson, Paul M. Conrod, Patricia Allgaier, Nicholas Garavan, Hugh Hum Brain Mapp Research Articles To identify neuroimaging biomarkers of alcohol dependence (AD) from structural magnetic resonance imaging, it may be useful to develop classification models that are explicitly generalizable to unseen sites and populations. This problem was explored in a mega‐analysis of previously published datasets from 2,034 AD and comparison participants spanning 27 sites curated by the ENIGMA Addiction Working Group. Data were grouped into a training set used for internal validation including 1,652 participants (692 AD, 24 sites), and a test set used for external validation with 382 participants (146 AD, 3 sites). An exploratory data analysis was first conducted, followed by an evolutionary search based feature selection to site generalizable and high performing subsets of brain measurements. Exploratory data analysis revealed that inclusion of case‐ and control‐only sites led to the inadvertent learning of site‐effects. Cross validation methods that do not properly account for site can drastically overestimate results. Evolutionary‐based feature selection leveraging leave‐one‐site‐out cross‐validation, to combat unintentional learning, identified cortical thickness in the left superior frontal gyrus and right lateral orbitofrontal cortex, cortical surface area in the right transverse temporal gyrus, and left putamen volume as final features. Ridge regression restricted to these features yielded a test‐set area under the receiver operating characteristic curve of 0.768. These findings evaluate strategies for handling multi‐site data with varied underlying class distributions and identify potential biomarkers for individuals with current AD. John Wiley & Sons, Inc. 2020-10-16 /pmc/articles/PMC8675424/ /pubmed/33064342 http://dx.doi.org/10.1002/hbm.25248 Text en © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Hahn, Sage Mackey, Scott Cousijn, Janna Foxe, John J. Heinz, Andreas Hester, Robert Hutchinson, Kent Kiefer, Falk Korucuoglu, Ozlem Lett, Tristram Li, Chiang‐Shan R. London, Edythe Lorenzetti, Valentina Maartje, Luijten Momenan, Reza Orr, Catherine Paulus, Martin Schmaal, Lianne Sinha, Rajita Sjoerds, Zsuzsika Stein, Dan J. Stein, Elliot van Holst, Ruth J. Veltman, Dick Walter, Henrik Wiers, Reinout W. Yucel, Murat Thompson, Paul M. Conrod, Patricia Allgaier, Nicholas Garavan, Hugh Predicting alcohol dependence from multi‐site brain structural measures |
title | Predicting alcohol dependence from multi‐site brain structural measures |
title_full | Predicting alcohol dependence from multi‐site brain structural measures |
title_fullStr | Predicting alcohol dependence from multi‐site brain structural measures |
title_full_unstemmed | Predicting alcohol dependence from multi‐site brain structural measures |
title_short | Predicting alcohol dependence from multi‐site brain structural measures |
title_sort | predicting alcohol dependence from multi‐site brain structural measures |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675424/ https://www.ncbi.nlm.nih.gov/pubmed/33064342 http://dx.doi.org/10.1002/hbm.25248 |
work_keys_str_mv | AT hahnsage predictingalcoholdependencefrommultisitebrainstructuralmeasures AT mackeyscott predictingalcoholdependencefrommultisitebrainstructuralmeasures AT cousijnjanna predictingalcoholdependencefrommultisitebrainstructuralmeasures AT foxejohnj predictingalcoholdependencefrommultisitebrainstructuralmeasures AT heinzandreas predictingalcoholdependencefrommultisitebrainstructuralmeasures AT hesterrobert predictingalcoholdependencefrommultisitebrainstructuralmeasures AT hutchinsonkent predictingalcoholdependencefrommultisitebrainstructuralmeasures AT kieferfalk predictingalcoholdependencefrommultisitebrainstructuralmeasures AT korucuogluozlem predictingalcoholdependencefrommultisitebrainstructuralmeasures AT letttristram predictingalcoholdependencefrommultisitebrainstructuralmeasures AT lichiangshanr predictingalcoholdependencefrommultisitebrainstructuralmeasures AT londonedythe predictingalcoholdependencefrommultisitebrainstructuralmeasures AT lorenzettivalentina predictingalcoholdependencefrommultisitebrainstructuralmeasures AT maartjeluijten predictingalcoholdependencefrommultisitebrainstructuralmeasures AT momenanreza predictingalcoholdependencefrommultisitebrainstructuralmeasures AT orrcatherine predictingalcoholdependencefrommultisitebrainstructuralmeasures AT paulusmartin predictingalcoholdependencefrommultisitebrainstructuralmeasures AT schmaallianne predictingalcoholdependencefrommultisitebrainstructuralmeasures AT sinharajita predictingalcoholdependencefrommultisitebrainstructuralmeasures AT sjoerdszsuzsika predictingalcoholdependencefrommultisitebrainstructuralmeasures AT steindanj predictingalcoholdependencefrommultisitebrainstructuralmeasures AT steinelliot predictingalcoholdependencefrommultisitebrainstructuralmeasures AT vanholstruthj predictingalcoholdependencefrommultisitebrainstructuralmeasures AT veltmandick predictingalcoholdependencefrommultisitebrainstructuralmeasures AT walterhenrik predictingalcoholdependencefrommultisitebrainstructuralmeasures AT wiersreinoutw predictingalcoholdependencefrommultisitebrainstructuralmeasures AT yucelmurat predictingalcoholdependencefrommultisitebrainstructuralmeasures AT thompsonpaulm predictingalcoholdependencefrommultisitebrainstructuralmeasures AT conrodpatricia predictingalcoholdependencefrommultisitebrainstructuralmeasures AT allgaiernicholas predictingalcoholdependencefrommultisitebrainstructuralmeasures AT garavanhugh predictingalcoholdependencefrommultisitebrainstructuralmeasures |