Cargando…
Acoustic emission corrosion feature extraction and severity prediction using hybrid wavelet packet transform and linear support vector classifier
Corrosion in carbon-steel pipelines leads to failure, which is a major cause of breakdown maintenance in the oil and gas industries. The acoustic emission (AE) signal is a reliable method for corrosion detection and classification in the modern Structural Health Monitoring (SHM) system. The efficien...
Autores principales: | May, Zazilah, Alam, M. K., Nayan, Nazrul Anuar, Rahman, Noor A’in A., Mahmud, Muhammad Shazwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675711/ https://www.ncbi.nlm.nih.gov/pubmed/34914761 http://dx.doi.org/10.1371/journal.pone.0261040 |
Ejemplares similares
-
Recent Advances in Nondestructive Method and Assessment of Corrosion Undercoating in Carbon–Steel Pipelines
por: May, Zazilah, et al.
Publicado: (2022) -
Unsupervised bivariate data clustering for damage assessment of carbon fiber composite laminates
por: May, Zazilah, et al.
Publicado: (2020) -
Information Theory Filters for Wavelet Packet Coefficient Selection with Application to Corrosion Type Identification from Acoustic Emission Signals
por: Van Dijck, Gert, et al.
Publicado: (2011) -
Failure Severity Prediction for Protective-Coating Disbondment via the Classification of Acoustic Emission Signals
por: Rahman, Noor A’in A., et al.
Publicado: (2023) -
Recent Advances in Non-Invasive Blood Pressure Monitoring and Prediction Using a Machine Learning Approach
por: Ismail, Siti Nor Ashikin, et al.
Publicado: (2022)