Cargando…
MFmap: A semi-supervised generative model matching cell lines to tumours and cancer subtypes
Translating in vitro results from experiments with cancer cell lines to clinical applications requires the selection of appropriate cell line models. Here we present MFmap (model fidelity map), a machine learning model to simultaneously predict the cancer subtype of a cell line and its similarity to...
Autores principales: | Zhang, Xiaoxiao, Kschischo, Maik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675718/ https://www.ncbi.nlm.nih.gov/pubmed/34914736 http://dx.doi.org/10.1371/journal.pone.0261183 |
Ejemplares similares
-
Distinct and Common Features of Numerical and Structural Chromosomal Instability across Different Cancer Types
por: Zhang, Xiaoxiao, et al.
Publicado: (2022) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
SCINA: A Semi-Supervised Subtyping Algorithm of Single Cells and Bulk Samples
por: Zhang, Ze, et al.
Publicado: (2019) -
High-fidelity detection, subtyping, and localization of five skin neoplasms using supervised and semi-supervised learning
por: Requa, James, et al.
Publicado: (2022) -
meth-SemiCancer: a cancer subtype classification framework via semi-supervised learning utilizing DNA methylation profiles
por: Choi, Joung Min, et al.
Publicado: (2023)