Cargando…
A two‐stage neural network prediction of chronic kidney disease
Accurate detection of chronic kidney disease (CKD) plays a pivotal role in early diagnosis and treatment. Measured glomerular filtration rate (mGFR) is considered the benchmark indicator in measuring the kidney function. However, due to the high resource cost of measuring mGFR, it is usually approxi...
Autores principales: | Peng, Hongquan, Zhu, Haibin, Ieong, Chi Wa Ao, Tao, Tao, Tsai, Tsung Yang, Liu, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675857/ https://www.ncbi.nlm.nih.gov/pubmed/34185395 http://dx.doi.org/10.1049/syb2.12031 |
Ejemplares similares
-
A Metabolomics study of metabolites associated with the glomerular filtration rate
por: Peng, Hongquan, et al.
Publicado: (2023) -
Identification of Metabolite Markers Associated with Kidney Function
por: Peng, Hongquan, et al.
Publicado: (2022) -
A Deep Neural Network for Early Detection and Prediction of Chronic Kidney Disease
por: Singh, Vijendra, et al.
Publicado: (2022) -
An artificial neural network‐based model to predict chronic kidney disease in aged cats
por: Biourge, Vincent, et al.
Publicado: (2020) -
Classification of Parkinson's disease stages with a two-stage deep neural network
por: Pedrero-Sánchez, José Francisco, et al.
Publicado: (2023)