Cargando…

Combined associations of 25-hydroxivitamin D and parathyroid hormone with diabetes risk and associated comorbidities among U.S. white and black women

BACKGROUND/OBJECTIVES: There is evidence of black–white differences in vitamin D status and cardiometabolic health. This study aimed to further evaluate the joint associations of 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone (PTH) with risks of diabetes and related cardiometabolic comorbidit...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Jin, Tu, Wanzhu, Manson, JoAnn E., Nan, Hongmei, Shadyab, Aladdin H., Bea, Jennifer W., Gower, Emily W., Qi, Lihong, Cheng, Ting-Yuan David, Song, Yiqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676147/
https://www.ncbi.nlm.nih.gov/pubmed/34531372
http://dx.doi.org/10.1038/s41387-021-00171-2
Descripción
Sumario:BACKGROUND/OBJECTIVES: There is evidence of black–white differences in vitamin D status and cardiometabolic health. This study aimed to further evaluate the joint associations of 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone (PTH) with risks of diabetes and related cardiometabolic comorbidities among white and black women. SUBJECTS/METHODS: We cross-sectionally and prospectively analyzed data from 1850 black and 3000 white postmenopausal women without cardiovascular disease or dialysis at baseline from the Women’s Health Initiative—Observational Study. Weighted Cox proportional hazards analyses and weighted logistic regression models were used to examine the joint associations of 25(OH)D and PTH with incident diabetes and prevalence of other diabetes-related cardiometabolic comorbidities (including CKD, hypertension, or obesity). RESULTS: We identified 3322 cases of obesity (n = 1629), hypertension (n = 2759), or CKD (n = 318) at baseline and 453 incident cases of diabetes during 11 years of follow-up. Cross-sectionally, lower 25(OH)D and higher PTH were independently associated with higher prevalence of hypertension [odds ratio (OR) = 0.79; 95% confidence interval (CI): 0.72–0.87 and OR = 1.55; 95% CI: 1.39–1.73] among white women only. When stratified by diabetes status, compared to women with 25(OH)D ≥50 nmol/L and PTH ≤6.89 pmol/L (65 pg/mL), women who did not have diabetes with vitamin D deficiency (<50 nmol/L) and PTH excess (>6.89 pmol/L) had higher prevalence of CKD, hypertension, or obesity (OR = 4.23; 95% CI: 2.90–6.18) than women who had diabetes (OR = 1.89; 95% CI: 0.96–3.71). Prospectively, lower 25(OH)D was associated with lower diabetes incidence [hazard ratio (HR) = 0.73; 95% CI: 0.62–0.86] in white women. Jointly, compared to the group with 25(OH)D ≥50 nmol/L and PTH ≤6.89 pmol/L, white women with 25(OH)D deficiency (<50 nmol/L) had elevated risk for diabetes, regardless of PTH levels. CONCLUSIONS: Low 25(OH)D and high PTH were jointly associated with increased risk of diabetes among white women only. Their joint associations with high prevalence of CKD, hypertension, and obesity were more pronounced among women without diabetes.