Cargando…

Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway

CONTEXT: Atherosclerosis (AS) is a chronic inflammatory disease. Human vascular smooth muscle cell (hVSMC) accumulation and human umbilical vein endothelial cell (HUVEC) dysfunction are associated with the pathogenesis of AS. This study explores whether myristicin plays a protective role in AS. MATE...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Liang, Liang, Huiying, Liu, Luoying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676624/
https://www.ncbi.nlm.nih.gov/pubmed/34905418
http://dx.doi.org/10.1080/13880209.2021.2010775
_version_ 1784615988548861952
author Luo, Liang
Liang, Huiying
Liu, Luoying
author_facet Luo, Liang
Liang, Huiying
Liu, Luoying
author_sort Luo, Liang
collection PubMed
description CONTEXT: Atherosclerosis (AS) is a chronic inflammatory disease. Human vascular smooth muscle cell (hVSMC) accumulation and human umbilical vein endothelial cell (HUVEC) dysfunction are associated with the pathogenesis of AS. This study explores whether myristicin plays a protective role in AS. MATERIALS AND METHODS: hVSMCs and HUVECs were stimulated with 100 μg/mL oxidized low-density lipoprotein (ox-LDL) to establish a cellular model of AS. Cell viability, lactate dehydrogenase (LDH) release and cell apoptosis were evaluated using MTT, LDH and flow cytometry assays, respectively. Cell migration and inflammatory cytokine release were assessed using Transwell assay and ELISA. RESULTS: Myristicin (5, 10, 25, and 50 μM) had no obvious effect on cell viability or the activity of LDH in hVSMCs, while 100 and 200 μM myristicin markedly suppressed hVSMCs viability and increased LDH release. Myristicin had no obvious effect on cell viability or the activity of LDH in HUVECs. Myristicin inhibited viability and increased apoptosis in ox-LDL-treated hVSMCs, but was associated with increased proliferation and inhibited apoptosis in HUVECs stimulated by ox-LDL. Additionally, myristicin markedly suppressed ox-LDL-induced hVSMCs migration and the release of inflammatory cytokines, including MCP-1, IL-6, VCAM-1 and ICAM-1, in HUVECs. Results also demonstrated that the promoting effects of ox-LDL on the PI3K/Akt and NF-κB signalling pathway in both hVSMCs and HUVECs were abolished by treatment with myristicin. DISCUSSION AND CONCLUSIONS: Myristicin regulated proliferation and apoptosis by regulating the PI3K/Akt/NF-κB signalling pathway in ox-LDL-stimulated hVSMCs and HUVECs. Thus, myristicin may be used as a new potential drug for AS treatment.
format Online
Article
Text
id pubmed-8676624
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-86766242021-12-17 Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway Luo, Liang Liang, Huiying Liu, Luoying Pharm Biol Research Article CONTEXT: Atherosclerosis (AS) is a chronic inflammatory disease. Human vascular smooth muscle cell (hVSMC) accumulation and human umbilical vein endothelial cell (HUVEC) dysfunction are associated with the pathogenesis of AS. This study explores whether myristicin plays a protective role in AS. MATERIALS AND METHODS: hVSMCs and HUVECs were stimulated with 100 μg/mL oxidized low-density lipoprotein (ox-LDL) to establish a cellular model of AS. Cell viability, lactate dehydrogenase (LDH) release and cell apoptosis were evaluated using MTT, LDH and flow cytometry assays, respectively. Cell migration and inflammatory cytokine release were assessed using Transwell assay and ELISA. RESULTS: Myristicin (5, 10, 25, and 50 μM) had no obvious effect on cell viability or the activity of LDH in hVSMCs, while 100 and 200 μM myristicin markedly suppressed hVSMCs viability and increased LDH release. Myristicin had no obvious effect on cell viability or the activity of LDH in HUVECs. Myristicin inhibited viability and increased apoptosis in ox-LDL-treated hVSMCs, but was associated with increased proliferation and inhibited apoptosis in HUVECs stimulated by ox-LDL. Additionally, myristicin markedly suppressed ox-LDL-induced hVSMCs migration and the release of inflammatory cytokines, including MCP-1, IL-6, VCAM-1 and ICAM-1, in HUVECs. Results also demonstrated that the promoting effects of ox-LDL on the PI3K/Akt and NF-κB signalling pathway in both hVSMCs and HUVECs were abolished by treatment with myristicin. DISCUSSION AND CONCLUSIONS: Myristicin regulated proliferation and apoptosis by regulating the PI3K/Akt/NF-κB signalling pathway in ox-LDL-stimulated hVSMCs and HUVECs. Thus, myristicin may be used as a new potential drug for AS treatment. Taylor & Francis 2021-12-14 /pmc/articles/PMC8676624/ /pubmed/34905418 http://dx.doi.org/10.1080/13880209.2021.2010775 Text en © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Luo, Liang
Liang, Huiying
Liu, Luoying
Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway
title Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway
title_full Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway
title_fullStr Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway
title_full_unstemmed Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway
title_short Myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the PI3K/Akt/NF-κB signalling pathway
title_sort myristicin regulates proliferation and apoptosis in oxidized low-density lipoprotein-stimulated human vascular smooth muscle cells and human umbilical vein endothelial cells by regulating the pi3k/akt/nf-κb signalling pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676624/
https://www.ncbi.nlm.nih.gov/pubmed/34905418
http://dx.doi.org/10.1080/13880209.2021.2010775
work_keys_str_mv AT luoliang myristicinregulatesproliferationandapoptosisinoxidizedlowdensitylipoproteinstimulatedhumanvascularsmoothmusclecellsandhumanumbilicalveinendothelialcellsbyregulatingthepi3kaktnfkbsignallingpathway
AT lianghuiying myristicinregulatesproliferationandapoptosisinoxidizedlowdensitylipoproteinstimulatedhumanvascularsmoothmusclecellsandhumanumbilicalveinendothelialcellsbyregulatingthepi3kaktnfkbsignallingpathway
AT liuluoying myristicinregulatesproliferationandapoptosisinoxidizedlowdensitylipoproteinstimulatedhumanvascularsmoothmusclecellsandhumanumbilicalveinendothelialcellsbyregulatingthepi3kaktnfkbsignallingpathway