Cargando…
Brain-Inspired Hardware Solutions for Inference in Bayesian Networks
The implementation of inference (i.e., computing posterior probabilities) in Bayesian networks using a conventional computing paradigm turns out to be inefficient in terms of energy, time, and space, due to the substantial resources required by floating-point operations. A departure from conventiona...
Autores principales: | Bagheriye, Leila, Kwisthout, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8677599/ https://www.ncbi.nlm.nih.gov/pubmed/34924925 http://dx.doi.org/10.3389/fnins.2021.728086 |
Ejemplares similares
-
Hardware Design for Autonomous Bayesian Networks
por: Faria, Rafatul, et al.
Publicado: (2021) -
When Can Predictive Brains be Truly Bayesian?
por: Blokpoel, Mark, et al.
Publicado: (2012) -
Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms
por: Stromatias, Evangelos, et al.
Publicado: (2015) -
A Unified Software/Hardware Scalable Architecture for Brain-Inspired Computing Based on Self-Organizing Neural Models
por: Muliukov, Artem R., et al.
Publicado: (2022) -
Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks
por: Kungl, Akos F., et al.
Publicado: (2019)