Cargando…
Explainable artificial intelligence (XAI) for exploring spatial variability of lung and bronchus cancer (LBC) mortality rates in the contiguous USA
Machine learning (ML) has demonstrated promise in predicting mortality; however, understanding spatial variation in risk factor contributions to mortality rate requires explainability. We applied explainable artificial intelligence (XAI) on a stack-ensemble machine learning model framework to explor...
Autores principales: | Ahmed, Zia U., Sun, Kang, Shelly, Michael, Mu, Lina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8677843/ https://www.ncbi.nlm.nih.gov/pubmed/34916529 http://dx.doi.org/10.1038/s41598-021-03198-8 |
Ejemplares similares
-
Editorial: Explainable Artificial Intelligence (XAI) in Systems Neuroscience
por: Lombardi, Angela, et al.
Publicado: (2021) -
Beauty is in the explainable artificial intelligence (XAI) of the “agnostic” beholder
por: Laios, Alexandros, et al.
Publicado: (2023) -
Framework for Classifying Explainable Artificial Intelligence (XAI) Algorithms in Clinical Medicine
por: Gniadek, Thomas, et al.
Publicado: (2023) -
Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review
por: de Vries, Bart M., et al.
Publicado: (2023) -
Explainable Artificial Intelligence (XAI) for Deep Learning Based Medical Imaging Classification
por: Ghnemat, Rawan, et al.
Publicado: (2023)