Cargando…
Detection of Preventable Fetal Distress During Labor From Scanned Cardiotocogram Tracings Using Deep Learning
Despite broad application during labor and delivery, there remains considerable debate about the value of electronic fetal monitoring (EFM). EFM includes the surveillance of fetal heart rate (FHR) patterns in conjunction with the mother's uterine contractions, providing a wealth of data about f...
Autores principales: | Frasch, Martin G., Strong, Shadrian B., Nilosek, David, Leaverton, Joshua, Schifrin, Barry S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8678281/ https://www.ncbi.nlm.nih.gov/pubmed/34926338 http://dx.doi.org/10.3389/fped.2021.736834 |
Ejemplares similares
-
Electronic Fetal Monitoring–Prevention or Rescue?
por: Schifrin, Barry S.
Publicado: (2020) -
Approaches to Preventing Intrapartum Fetal Injury
por: Schifrin, Barry S., et al.
Publicado: (2022) -
Fetal Cardiovascular Decompensation During Labor Predicted From the Individual Heart Rate Tracing: A Machine Learning Approach in Near-Term Fetal Sheep Model
por: Gold, Nathan, et al.
Publicado: (2021) -
Deep learning based fetal distress detection from time frequency representation of cardiotocogram signal using Morse wavelet: research study
por: Daydulo, Yared Daniel, et al.
Publicado: (2022) -
Deep neural network-based classification of cardiotocograms outperformed conventional algorithms
por: Ogasawara, Jun, et al.
Publicado: (2021)