Cargando…
High titers of myelin oligodendrocyte glycoprotein antibody are only observed close to clinical events in pediatrics
BACKGROUND: Myelin oligodendrocyte glycoprotein (MOG)-IgG is increasingly detected in children with CNS demyelinating diseases. Due to the clinical overlap in children with CNS demyelination with and without MOG-IgG positivity, identifying distinct characteristics would help early diagnosis. OBJECTI...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8678350/ https://www.ncbi.nlm.nih.gov/pubmed/34517190 http://dx.doi.org/10.1016/j.msard.2021.103253 |
Sumario: | BACKGROUND: Myelin oligodendrocyte glycoprotein (MOG)-IgG is increasingly detected in children with CNS demyelinating diseases. Due to the clinical overlap in children with CNS demyelination with and without MOG-IgG positivity, identifying distinct characteristics would help early diagnosis. OBJECTIVE: To compare the specific features that may help differentiate MOG-IgG positive from negative children with CNS demyelinating diseases. To compare characteristics of patients with high and low MOG-IgG titers. METHODS: Children with CNS demyelinating disorders with onset before 18 years of age who were tested for MOG-IgG at the University of California San Francisco were included. This retrospective study collected the following by chart review: demographic, clinical, MRI, CSF, and treatment data. Serum was tested for MOG-IgG at Mayo Clinic by live cell-based fluorescent activated cell sorting assay with titer ≥1:20 confirming positivity. RESULTS: We assessed 65 Mog-IgG positive and 65 MOG-IgG negative patients. Median (IQR) age of onset was 7.6 (6.6) years for MOG-IgG positive and 13.8 (5.8) years for MOG-IgG negative (p<0.001). The female to male ratio was approximately 1:1 for the MOG-IgG positive group and 3:1 for the negative group (p=0.042). The most common initial diagnosis was demyelinating disease not otherwise specified (52.3%) in the positive group, compared to relapsing-remitting multiple sclerosis (41.5%) in the negative group (p<0.01). Optic nerve involvement (52.3%) was the most common clinical localization at onset for the MOG-IgG positive group, while brainstem/cerebellar (49.2%) localization predominated in the MOG-IgG negative group. The positive group also presented more often with a severe event at disease onset than the negative group (81.5% vs 60.3%; p< 0.002). MOG-IgG positive children had a lower frequency of oligoclonal bands (15.8% vs 57.4%; p<0.001). The frequency of baseline brain and spinal cord MRI abnormalities were similar in both groups; however, MOG-IgG positive patients more often had T2 hyperintense lesions in the optic nerves (26/43 vs 10/41; p<0.001). Disease-modifying medications were used in 64.6% of MOG-IgG positive patients versus 80% of negative children. Of the 32 positive patients with follow-up titers, seven reverted to negative while two who tested negative initially converted to positive. Positive titers greater than 1:160 were only observed within four months of a clinical event (disease onset or relapse). Patients with high and low MOG-IgG titers were comparable in demographic and clinical characteristics. CONCLUSION: Despite some clinical overlap, we report notable demographic, MRI and CSF differences between MOG-IgG positive and negative children with CNS demyelinating disorders at disease onset. High MOG-IgG titers were only observed close to a clinical event. |
---|