Cargando…

Highly Stable Nonhydroxyl Antisolvent Polymer Dielectric: A New Strategy towards High-Performance Low-Temperature Solution-Processed Ultraflexible Organic Transistors for Skin-Inspired Electronics

Scarcity of the antisolvent polymer dielectrics and their poor stability have significantly prevented solution-processed ultraflexible organic transistors from low-temperature, large-scale production for applications in low-cost skin-inspired electronics. Here, we present a novel low-temperature sol...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Mingxin, Zhang, Cong, Yang, Yahan, Ren, Hang, Zhang, Junmo, Zhao, Xiaoli, Tong, Yanhong, Tang, Qingxin, Liu, Yichun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8678616/
https://www.ncbi.nlm.nih.gov/pubmed/34957407
http://dx.doi.org/10.34133/2021/9897353
Descripción
Sumario:Scarcity of the antisolvent polymer dielectrics and their poor stability have significantly prevented solution-processed ultraflexible organic transistors from low-temperature, large-scale production for applications in low-cost skin-inspired electronics. Here, we present a novel low-temperature solution-processed PEI-EP polymer dielectric with dramatically enhanced thermal stability, humidity stability, and frequency stability compared with the conventional PVA/c-PVA and c-PVP dielectrics, by incorporating polyethyleneimine PEI as crosslinking sites in nonhydroxyl epoxy EP. The PEI-EP dielectric requires a very low process temperature as low as 70°C and simultaneously possesses the high initial decomposition temperature (340°C) and glass transition temperature (230°C), humidity-resistant dielectric properties, and frequency-independent capacitance. Integrated into the solution-processed C8-BTBT thin-film transistors, the PEI-EP dielectric enables the device stable operation in air within 2 months and in high-humidity environment from 20 to 100% without significant performance degradation. The PEI-EP dielectric transistor array also presents weak hysteresis transfer characteristics, excellent electrical performance with 100% operation rate, high mobility up to 7.98 cm(2) V(−1) s(−1) (1 Hz) and average mobility as high as 5.3 cm(2) V(−1) s(−1) (1 Hz), excellent flexibility with the normal operation at the bending radius down to 0.003 mm, and foldable and crumpling-resistant capability. These results reveal the great potential of PEI-EP polymer as dielectric of low-temperature solution-processed ultraflexible organic transistors and open a new strategy for the development and applications of next-generation low-cost skin electronics.