Cargando…
Application of MAGnetic resonance imaging compilation in acute ischemic stroke
BACKGROUND: Synthetic magnetic resonance imaging (MRI) MAGnetic resonance imaging compilation (MAGiC) is a new MRI technology. Conventional T1, T2, T2-fluid-attenuated inversion recovery (FLAIR) contrast images, quantitative images of T1 and T2 mapping, and MAGiC phase sensitive inversion recovery (...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8678888/ https://www.ncbi.nlm.nih.gov/pubmed/35047594 http://dx.doi.org/10.12998/wjcc.v9.i35.10828 |
_version_ | 1784616405103017984 |
---|---|
author | Wang, Qi Wang, Gang Sun, Qiang Sun, Di-He |
author_facet | Wang, Qi Wang, Gang Sun, Qiang Sun, Di-He |
author_sort | Wang, Qi |
collection | PubMed |
description | BACKGROUND: Synthetic magnetic resonance imaging (MRI) MAGnetic resonance imaging compilation (MAGiC) is a new MRI technology. Conventional T1, T2, T2-fluid-attenuated inversion recovery (FLAIR) contrast images, quantitative images of T1 and T2 mapping, and MAGiC phase sensitive inversion recovery (PSIR) Vessel cerebrovascular images can be obtained simultaneously through post-processing at the same time after completing a scan. In recent years, studies have reported that MAGiC can be applied to patients with acute ischemic stroke. We hypothesized that the synthetic MRI vascular screening scheme can evaluate the degree of cerebral artery stenosis in patients with acute ischemic stroke. AIM: To explore the application value of vascular images obtained by synthetic MRI in diagnosing acute ischemic stroke. METHODS: A total of 64 patients with acute ischemic stroke were selected and examined by MRI in the current retrospective cohort study. The scanning sequences included traditional T1, T2, and T2-FLAIR, three-dimensional time-of-flight magnetic resonance angiography (3D TOF MRA), diffusion-weighted imaging (DWI), and synthetic MRI. Conventional contrast images (T1, T2, and T2-FLAIR) and intracranial vessel images (MAGiC PSIR Vessel] were automatically reconstructed using synthetic MRI raw data. The contrast-to-noise ratio (CNR) values of traditional T1, T2, and T2-FLAIR images and MAGiC reconstructed T1, T2, and T2-FLAIR images in DWI diffusion restriction areas were measured and compared. MAGiC PSIR Vessel and TOF MRA images were used to measure and calculate the stenosis degree of bilateral middle cerebral artery stenosis areas. The consistency of MAGiC PSIR Vessel and TOF MRA in displaying the degree of vascular stenosis with computed tomography angiography (CTA) was compared. RESULTS: Among the 64 patients with acute ischemic stroke, 79 vascular stenosis areas showed that the correlation between MAGiC PSIR Vessel and CTA (r = 0.90, P < 0.01) was higher than that between TOF MRA and CTA (r = 0.84, P < 0.01). With a degree of vascular stenosis > 50% assessed by CTA as a reference, the area under the receiver operating characteristic (ROC) curve of MAGiC PSIR Vessel [area under the curve (AUC) = 0.906, P < 0.01] was higher than that of TOF MRA (AUC = 0.790, P < 0.01). Among the 64 patients with acute ischemic stroke, 39 were scanned for traditional T1, T2, and T2-FLAIR images and MAGiC images simultaneously, and CNR values in DWI diffusion restriction areas were measured, which were: Traditional T2 = 21.2, traditional T1 = -6.7, and traditional T2-FLAIR = 11.9; and MAGiC T2 = 7.1, MAGiC T1 = -3.9, and MAGiC T2-FLAIR = 4.5. CONCLUSION: The synthetic MRI vascular screening scheme for patients with acute ischemic stroke can accurately evaluate the degree of bilateral middle cerebral artery stenosis, which is of great significance to early thrombolytic interventional therapy and improving patients’ quality of life. |
format | Online Article Text |
id | pubmed-8678888 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Baishideng Publishing Group Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-86788882022-01-18 Application of MAGnetic resonance imaging compilation in acute ischemic stroke Wang, Qi Wang, Gang Sun, Qiang Sun, Di-He World J Clin Cases Retrospective Cohort Study BACKGROUND: Synthetic magnetic resonance imaging (MRI) MAGnetic resonance imaging compilation (MAGiC) is a new MRI technology. Conventional T1, T2, T2-fluid-attenuated inversion recovery (FLAIR) contrast images, quantitative images of T1 and T2 mapping, and MAGiC phase sensitive inversion recovery (PSIR) Vessel cerebrovascular images can be obtained simultaneously through post-processing at the same time after completing a scan. In recent years, studies have reported that MAGiC can be applied to patients with acute ischemic stroke. We hypothesized that the synthetic MRI vascular screening scheme can evaluate the degree of cerebral artery stenosis in patients with acute ischemic stroke. AIM: To explore the application value of vascular images obtained by synthetic MRI in diagnosing acute ischemic stroke. METHODS: A total of 64 patients with acute ischemic stroke were selected and examined by MRI in the current retrospective cohort study. The scanning sequences included traditional T1, T2, and T2-FLAIR, three-dimensional time-of-flight magnetic resonance angiography (3D TOF MRA), diffusion-weighted imaging (DWI), and synthetic MRI. Conventional contrast images (T1, T2, and T2-FLAIR) and intracranial vessel images (MAGiC PSIR Vessel] were automatically reconstructed using synthetic MRI raw data. The contrast-to-noise ratio (CNR) values of traditional T1, T2, and T2-FLAIR images and MAGiC reconstructed T1, T2, and T2-FLAIR images in DWI diffusion restriction areas were measured and compared. MAGiC PSIR Vessel and TOF MRA images were used to measure and calculate the stenosis degree of bilateral middle cerebral artery stenosis areas. The consistency of MAGiC PSIR Vessel and TOF MRA in displaying the degree of vascular stenosis with computed tomography angiography (CTA) was compared. RESULTS: Among the 64 patients with acute ischemic stroke, 79 vascular stenosis areas showed that the correlation between MAGiC PSIR Vessel and CTA (r = 0.90, P < 0.01) was higher than that between TOF MRA and CTA (r = 0.84, P < 0.01). With a degree of vascular stenosis > 50% assessed by CTA as a reference, the area under the receiver operating characteristic (ROC) curve of MAGiC PSIR Vessel [area under the curve (AUC) = 0.906, P < 0.01] was higher than that of TOF MRA (AUC = 0.790, P < 0.01). Among the 64 patients with acute ischemic stroke, 39 were scanned for traditional T1, T2, and T2-FLAIR images and MAGiC images simultaneously, and CNR values in DWI diffusion restriction areas were measured, which were: Traditional T2 = 21.2, traditional T1 = -6.7, and traditional T2-FLAIR = 11.9; and MAGiC T2 = 7.1, MAGiC T1 = -3.9, and MAGiC T2-FLAIR = 4.5. CONCLUSION: The synthetic MRI vascular screening scheme for patients with acute ischemic stroke can accurately evaluate the degree of bilateral middle cerebral artery stenosis, which is of great significance to early thrombolytic interventional therapy and improving patients’ quality of life. Baishideng Publishing Group Inc 2021-12-16 2021-12-16 /pmc/articles/PMC8678888/ /pubmed/35047594 http://dx.doi.org/10.12998/wjcc.v9.i35.10828 Text en ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved. https://creativecommons.org/licenses/by-nc/4.0/This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/ |
spellingShingle | Retrospective Cohort Study Wang, Qi Wang, Gang Sun, Qiang Sun, Di-He Application of MAGnetic resonance imaging compilation in acute ischemic stroke |
title | Application of MAGnetic resonance imaging compilation in acute ischemic stroke |
title_full | Application of MAGnetic resonance imaging compilation in acute ischemic stroke |
title_fullStr | Application of MAGnetic resonance imaging compilation in acute ischemic stroke |
title_full_unstemmed | Application of MAGnetic resonance imaging compilation in acute ischemic stroke |
title_short | Application of MAGnetic resonance imaging compilation in acute ischemic stroke |
title_sort | application of magnetic resonance imaging compilation in acute ischemic stroke |
topic | Retrospective Cohort Study |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8678888/ https://www.ncbi.nlm.nih.gov/pubmed/35047594 http://dx.doi.org/10.12998/wjcc.v9.i35.10828 |
work_keys_str_mv | AT wangqi applicationofmagneticresonanceimagingcompilationinacuteischemicstroke AT wanggang applicationofmagneticresonanceimagingcompilationinacuteischemicstroke AT sunqiang applicationofmagneticresonanceimagingcompilationinacuteischemicstroke AT sundihe applicationofmagneticresonanceimagingcompilationinacuteischemicstroke |