Cargando…

A DNAmCULTURE Epigenetic Fingerprint Recapitulates Physiological Aging

Aging elicits dramatic changes to DNA methylation (DNAm), however the causes and consequences of such alterations to the epigenome remain unclear. The utility of biomarkers of aging based on DNAm patterns would be greatly enhanced if in vitro models existed that recapitulated physiological phenotype...

Descripción completa

Detalles Bibliográficos
Autores principales: Minteer, Christopher, Morselli, Marco, Meer, Margarita, Cao, Jian, Lang, Sabine, Pellegrini, Matteo, Yan, Qin, Levine, Morgan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8679434/
http://dx.doi.org/10.1093/geroni/igab046.018
Descripción
Sumario:Aging elicits dramatic changes to DNA methylation (DNAm), however the causes and consequences of such alterations to the epigenome remain unclear. The utility of biomarkers of aging based on DNAm patterns would be greatly enhanced if in vitro models existed that recapitulated physiological phenotypes such that modulation could garnish mechanistic insights. Using DNAm from serially passaged mouse embryonic fibroblasts, we developed a marker of culture aging and asked if culture phenotypes, like exhaustive replication, are epigenetically analogous to physiological aging. Our measure, termed DNAmCULTURE, accurately estimated passage number and was shown to strongly increase with age when examined in multiple tissues. Furthermore, we observed epigenetic alterations indicative of early cultured cells in animals undergoing caloric restriction and in lung and kidney fibroblasts re-programmed to iPSCs. This study identifies culture-derived alterations to the methylome as physiologically relevant and implicates culture aging as an important feature in known epigenetic aging phenomena.