Cargando…
Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization
BACKGROUND: The volume of biomedical literature and clinical data is growing at an exponential rate. Therefore, efficient access to data described in unstructured biomedical texts is a crucial task for the biomedical industry and research. Named Entity Recognition (NER) is the first step for informa...
Autores principales: | Rivera-Zavala, Renzo M., Martínez, Paloma |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8680060/ https://www.ncbi.nlm.nih.gov/pubmed/34920703 http://dx.doi.org/10.1186/s12859-021-04247-9 |
Ejemplares similares
-
Transfer learning for biomedical named entity recognition with neural networks
por: Giorgi, John M, et al.
Publicado: (2018) -
Hierarchical shared transfer learning for biomedical named entity recognition
por: Chai, Zhaoying, et al.
Publicado: (2022) -
Unsupervised cross-lingual model transfer for named entity recognition with contextualized word representations
por: Yan, Huijiong, et al.
Publicado: (2021) -
Multitask learning for biomedical named entity recognition with cross-sharing structure
por: Wang, Xi, et al.
Publicado: (2019) -
The Impact of Pretrained Language Models on Negation and Speculation Detection in Cross-Lingual Medical Text: Comparative Study
por: Rivera Zavala, Renzo, et al.
Publicado: (2020)