Cargando…

Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures

While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneit...

Descripción completa

Detalles Bibliográficos
Autores principales: Suphavilai, Chayaporn, Chia, Shumei, Sharma, Ankur, Tu, Lorna, Da Silva, Rafael Peres, Mongia, Aanchal, DasGupta, Ramanuj, Nagarajan, Niranjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8680165/
https://www.ncbi.nlm.nih.gov/pubmed/34915921
http://dx.doi.org/10.1186/s13073-021-01000-y
Descripción
Sumario:While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneity (ITTH) for predicting clinical outcomes. Leveraging single-cell RNA-seq (scRNA-seq) with a recommender system (CaDRReS-Sc), we show that heterogeneous gene-expression signatures can predict drug response with high accuracy (80%). Using patient-proximal cell lines, we established the validity of CaDRReS-Sc’s monotherapy (Pearson r>0.6) and combinatorial predictions targeting clone-specific vulnerabilities (>10% improvement). Applying CaDRReS-Sc to rapidly expanding scRNA-seq compendiums can serve as in silico screen to accelerate drug-repurposing studies. Availability: https://github.com/CSB5/CaDRReS-Sc. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01000-y.