Cargando…

Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures

While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneit...

Descripción completa

Detalles Bibliográficos
Autores principales: Suphavilai, Chayaporn, Chia, Shumei, Sharma, Ankur, Tu, Lorna, Da Silva, Rafael Peres, Mongia, Aanchal, DasGupta, Ramanuj, Nagarajan, Niranjan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8680165/
https://www.ncbi.nlm.nih.gov/pubmed/34915921
http://dx.doi.org/10.1186/s13073-021-01000-y
_version_ 1784616689672912896
author Suphavilai, Chayaporn
Chia, Shumei
Sharma, Ankur
Tu, Lorna
Da Silva, Rafael Peres
Mongia, Aanchal
DasGupta, Ramanuj
Nagarajan, Niranjan
author_facet Suphavilai, Chayaporn
Chia, Shumei
Sharma, Ankur
Tu, Lorna
Da Silva, Rafael Peres
Mongia, Aanchal
DasGupta, Ramanuj
Nagarajan, Niranjan
author_sort Suphavilai, Chayaporn
collection PubMed
description While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneity (ITTH) for predicting clinical outcomes. Leveraging single-cell RNA-seq (scRNA-seq) with a recommender system (CaDRReS-Sc), we show that heterogeneous gene-expression signatures can predict drug response with high accuracy (80%). Using patient-proximal cell lines, we established the validity of CaDRReS-Sc’s monotherapy (Pearson r>0.6) and combinatorial predictions targeting clone-specific vulnerabilities (>10% improvement). Applying CaDRReS-Sc to rapidly expanding scRNA-seq compendiums can serve as in silico screen to accelerate drug-repurposing studies. Availability: https://github.com/CSB5/CaDRReS-Sc. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01000-y.
format Online
Article
Text
id pubmed-8680165
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-86801652021-12-20 Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures Suphavilai, Chayaporn Chia, Shumei Sharma, Ankur Tu, Lorna Da Silva, Rafael Peres Mongia, Aanchal DasGupta, Ramanuj Nagarajan, Niranjan Genome Med Method While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneity (ITTH) for predicting clinical outcomes. Leveraging single-cell RNA-seq (scRNA-seq) with a recommender system (CaDRReS-Sc), we show that heterogeneous gene-expression signatures can predict drug response with high accuracy (80%). Using patient-proximal cell lines, we established the validity of CaDRReS-Sc’s monotherapy (Pearson r>0.6) and combinatorial predictions targeting clone-specific vulnerabilities (>10% improvement). Applying CaDRReS-Sc to rapidly expanding scRNA-seq compendiums can serve as in silico screen to accelerate drug-repurposing studies. Availability: https://github.com/CSB5/CaDRReS-Sc. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01000-y. BioMed Central 2021-12-16 /pmc/articles/PMC8680165/ /pubmed/34915921 http://dx.doi.org/10.1186/s13073-021-01000-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Suphavilai, Chayaporn
Chia, Shumei
Sharma, Ankur
Tu, Lorna
Da Silva, Rafael Peres
Mongia, Aanchal
DasGupta, Ramanuj
Nagarajan, Niranjan
Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
title Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
title_full Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
title_fullStr Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
title_full_unstemmed Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
title_short Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
title_sort predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8680165/
https://www.ncbi.nlm.nih.gov/pubmed/34915921
http://dx.doi.org/10.1186/s13073-021-01000-y
work_keys_str_mv AT suphavilaichayaporn predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures
AT chiashumei predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures
AT sharmaankur predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures
AT tulorna predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures
AT dasilvarafaelperes predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures
AT mongiaaanchal predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures
AT dasguptaramanuj predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures
AT nagarajanniranjan predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures