Cargando…
Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneit...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8680165/ https://www.ncbi.nlm.nih.gov/pubmed/34915921 http://dx.doi.org/10.1186/s13073-021-01000-y |
_version_ | 1784616689672912896 |
---|---|
author | Suphavilai, Chayaporn Chia, Shumei Sharma, Ankur Tu, Lorna Da Silva, Rafael Peres Mongia, Aanchal DasGupta, Ramanuj Nagarajan, Niranjan |
author_facet | Suphavilai, Chayaporn Chia, Shumei Sharma, Ankur Tu, Lorna Da Silva, Rafael Peres Mongia, Aanchal DasGupta, Ramanuj Nagarajan, Niranjan |
author_sort | Suphavilai, Chayaporn |
collection | PubMed |
description | While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneity (ITTH) for predicting clinical outcomes. Leveraging single-cell RNA-seq (scRNA-seq) with a recommender system (CaDRReS-Sc), we show that heterogeneous gene-expression signatures can predict drug response with high accuracy (80%). Using patient-proximal cell lines, we established the validity of CaDRReS-Sc’s monotherapy (Pearson r>0.6) and combinatorial predictions targeting clone-specific vulnerabilities (>10% improvement). Applying CaDRReS-Sc to rapidly expanding scRNA-seq compendiums can serve as in silico screen to accelerate drug-repurposing studies. Availability: https://github.com/CSB5/CaDRReS-Sc. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01000-y. |
format | Online Article Text |
id | pubmed-8680165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-86801652021-12-20 Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures Suphavilai, Chayaporn Chia, Shumei Sharma, Ankur Tu, Lorna Da Silva, Rafael Peres Mongia, Aanchal DasGupta, Ramanuj Nagarajan, Niranjan Genome Med Method While understanding molecular heterogeneity across patients underpins precision oncology, there is increasing appreciation for taking intra-tumor heterogeneity into account. Based on large-scale analysis of cancer omics datasets, we highlight the importance of intra-tumor transcriptomic heterogeneity (ITTH) for predicting clinical outcomes. Leveraging single-cell RNA-seq (scRNA-seq) with a recommender system (CaDRReS-Sc), we show that heterogeneous gene-expression signatures can predict drug response with high accuracy (80%). Using patient-proximal cell lines, we established the validity of CaDRReS-Sc’s monotherapy (Pearson r>0.6) and combinatorial predictions targeting clone-specific vulnerabilities (>10% improvement). Applying CaDRReS-Sc to rapidly expanding scRNA-seq compendiums can serve as in silico screen to accelerate drug-repurposing studies. Availability: https://github.com/CSB5/CaDRReS-Sc. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13073-021-01000-y. BioMed Central 2021-12-16 /pmc/articles/PMC8680165/ /pubmed/34915921 http://dx.doi.org/10.1186/s13073-021-01000-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Method Suphavilai, Chayaporn Chia, Shumei Sharma, Ankur Tu, Lorna Da Silva, Rafael Peres Mongia, Aanchal DasGupta, Ramanuj Nagarajan, Niranjan Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures |
title | Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures |
title_full | Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures |
title_fullStr | Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures |
title_full_unstemmed | Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures |
title_short | Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures |
title_sort | predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8680165/ https://www.ncbi.nlm.nih.gov/pubmed/34915921 http://dx.doi.org/10.1186/s13073-021-01000-y |
work_keys_str_mv | AT suphavilaichayaporn predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures AT chiashumei predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures AT sharmaankur predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures AT tulorna predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures AT dasilvarafaelperes predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures AT mongiaaanchal predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures AT dasguptaramanuj predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures AT nagarajanniranjan predictingheterogeneityinclonespecifictherapeuticvulnerabilitiesusingsinglecelltranscriptomicsignatures |