Cargando…

Relative Vigorous-Intensity Physical Activity Predicts Brain Microstructural Changes in Older Adults

Physical activity especially at moderate-to-vigorous intensity may preserve brain structure in old age. However, current findings are cross-sectional and rely on absolute intensity. This study aimed to examine whether relative or absolute vigorous-intensity physical activity (VPA) predicts brain mic...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Qu, Schrack, Jennifer, Landman, Bennett, Wanigatunga, Amal, Resnick, Susan, Ferrucci, Luigi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8680230/
http://dx.doi.org/10.1093/geroni/igab046.1720
Descripción
Sumario:Physical activity especially at moderate-to-vigorous intensity may preserve brain structure in old age. However, current findings are cross-sectional and rely on absolute intensity. This study aimed to examine whether relative or absolute vigorous-intensity physical activity (VPA) predicts brain microstructural changes. We analyzed 260 initially cognitively normal and well-functioning participants(age=70.5yrs) who had VPA data via ActiHeart and longitudinal brain microstructure by DTI(follow-up=3.7yrs). Associations of VPA with microstructural changes were examined using linear mixed-effects models, adjusted for demographics. Each SD higher relative VPA defined by heart rate reserve (i.e. 21 min/day) was significantly associated with less decline in memory-related microstructural integrity, including mean diffusivity of entorhinal cortex and parahippocampal gyrus and fractional anisotropy of uncinate fasciculus and cingulum-hippocampal part, and not executive/motor-related microstructure. Absolute VPA was not associated with microstructural markers. Among well-functioning older adults, participating in VPA defined by heart rate reserve may predict less brain microstructural decline in memory-related areas.