Cargando…
Are Machine Learning Models Used to Represent Accelerometry Data Robust to Age Differences?
Regular and sufficient amounts of physical activity (PA) are significant in increasing health benefits and mitigating health risks. Given the growing popularity of wrist-worn devices across all age groups, a rigorous evaluation for recognizing hallmark measures of physical activities and estimating...
Autores principales: | Manini, Todd, Bai, Chen, Wanigatunga, Amal, Saldana, Santiago, Casanova, Ramon, Mardini, Mamoun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8681343/ http://dx.doi.org/10.1093/geroni/igab046.2880 |
Ejemplares similares
-
Are Machine Learning Models on Wrist Accelerometry Robust against Differences in Physical Performance among Older Adults?
por: Bai, Chen, et al.
Publicado: (2022) -
Age Differences in Estimating Physical Activity by Wrist Accelerometry Using Machine Learning
por: Mardini, Mamoun T., et al.
Publicado: (2021) -
WRIST-WORN TRI-AXIAL ACCELEROMETER VALIDATION IN YOUNG, MIDDLE-AGED, AND OLDER ADULTS
por: Manini, Todd M, et al.
Publicado: (2019) -
EXPLAINABLE MACHINE-LEARNING FOR PREDICTING PREOPERATIVE FRAILTY PHENOTYPE USING ELECTRONIC HEALTH RECORDS
por: Mardini, Mamoun, et al.
Publicado: (2022) -
Smart Wearables in the Lens of Aging: Results From the ROAMM Study
por: Mardini, Mamoun, et al.
Publicado: (2020)