Cargando…
Successful Exogenous Expression of ATP8, a Mitochondrial Encoded Protein, From the Nucleus In Vivo.
Replicative errors, inefficient repair, and proximity to reactive oxygen species production sites make the mitochondrial DNA (mtDNA) susceptible to damage with time. mtDNA mutations accumulate with age and accompany a progressive decline in organelle function. We lack molecular biology tools to mani...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8681543/ http://dx.doi.org/10.1093/geroni/igab046.2577 |
_version_ | 1784617002552262656 |
---|---|
author | Begelman, David Dixit, Bhavna Lewis, Caitlin Watson, Mark Brand, Martin Boominathan, Amutha |
author_facet | Begelman, David Dixit, Bhavna Lewis, Caitlin Watson, Mark Brand, Martin Boominathan, Amutha |
author_sort | Begelman, David |
collection | PubMed |
description | Replicative errors, inefficient repair, and proximity to reactive oxygen species production sites make the mitochondrial DNA (mtDNA) susceptible to damage with time. mtDNA mutations accumulate with age and accompany a progressive decline in organelle function. We lack molecular biology tools to manipulate mtDNA, thus we explore the possibility in vivo of utilizing allotopic expression, or the re-engineering mitochondrial genes and expressing them from the nucleus, as an approach to rescue defects arising from mtDNA mutations. This study uses a mouse model with a mutation in the mitochondrial ATP8 gene that encodes a protein subunit of the ATP synthase. We generated a transgenic mouse with an epitope-tagged recoded and mitochondrial-targeted ATP8 gene expressed from the nucleus. Our results show that the allotopically expressed ATP8 protein in the transgenic mice is robustly expressed across all tested tissues, successfully transported into the mitochondria, and incorporated into ATP synthase. We are currently evaluating if allotopic expression of ATP8 will functionally rescue the behavioral and bioenergetic defects in ATP8 mutant mice. Translating allotopic expression technology into a mammal and demonstrating systemic functional rescue will lend credence to utilizing allotopic expression as a gene therapy in humans to repair physiological consequences of mtDNA defects that may accumulate with age. |
format | Online Article Text |
id | pubmed-8681543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-86815432021-12-17 Successful Exogenous Expression of ATP8, a Mitochondrial Encoded Protein, From the Nucleus In Vivo. Begelman, David Dixit, Bhavna Lewis, Caitlin Watson, Mark Brand, Martin Boominathan, Amutha Innov Aging Abstracts Replicative errors, inefficient repair, and proximity to reactive oxygen species production sites make the mitochondrial DNA (mtDNA) susceptible to damage with time. mtDNA mutations accumulate with age and accompany a progressive decline in organelle function. We lack molecular biology tools to manipulate mtDNA, thus we explore the possibility in vivo of utilizing allotopic expression, or the re-engineering mitochondrial genes and expressing them from the nucleus, as an approach to rescue defects arising from mtDNA mutations. This study uses a mouse model with a mutation in the mitochondrial ATP8 gene that encodes a protein subunit of the ATP synthase. We generated a transgenic mouse with an epitope-tagged recoded and mitochondrial-targeted ATP8 gene expressed from the nucleus. Our results show that the allotopically expressed ATP8 protein in the transgenic mice is robustly expressed across all tested tissues, successfully transported into the mitochondria, and incorporated into ATP synthase. We are currently evaluating if allotopic expression of ATP8 will functionally rescue the behavioral and bioenergetic defects in ATP8 mutant mice. Translating allotopic expression technology into a mammal and demonstrating systemic functional rescue will lend credence to utilizing allotopic expression as a gene therapy in humans to repair physiological consequences of mtDNA defects that may accumulate with age. Oxford University Press 2021-12-17 /pmc/articles/PMC8681543/ http://dx.doi.org/10.1093/geroni/igab046.2577 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of The Gerontological Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Abstracts Begelman, David Dixit, Bhavna Lewis, Caitlin Watson, Mark Brand, Martin Boominathan, Amutha Successful Exogenous Expression of ATP8, a Mitochondrial Encoded Protein, From the Nucleus In Vivo. |
title | Successful Exogenous Expression of ATP8, a Mitochondrial Encoded Protein, From the Nucleus In Vivo. |
title_full | Successful Exogenous Expression of ATP8, a Mitochondrial Encoded Protein, From the Nucleus In Vivo. |
title_fullStr | Successful Exogenous Expression of ATP8, a Mitochondrial Encoded Protein, From the Nucleus In Vivo. |
title_full_unstemmed | Successful Exogenous Expression of ATP8, a Mitochondrial Encoded Protein, From the Nucleus In Vivo. |
title_short | Successful Exogenous Expression of ATP8, a Mitochondrial Encoded Protein, From the Nucleus In Vivo. |
title_sort | successful exogenous expression of atp8, a mitochondrial encoded protein, from the nucleus in vivo. |
topic | Abstracts |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8681543/ http://dx.doi.org/10.1093/geroni/igab046.2577 |
work_keys_str_mv | AT begelmandavid successfulexogenousexpressionofatp8amitochondrialencodedproteinfromthenucleusinvivo AT dixitbhavna successfulexogenousexpressionofatp8amitochondrialencodedproteinfromthenucleusinvivo AT lewiscaitlin successfulexogenousexpressionofatp8amitochondrialencodedproteinfromthenucleusinvivo AT watsonmark successfulexogenousexpressionofatp8amitochondrialencodedproteinfromthenucleusinvivo AT brandmartin successfulexogenousexpressionofatp8amitochondrialencodedproteinfromthenucleusinvivo AT boominathanamutha successfulexogenousexpressionofatp8amitochondrialencodedproteinfromthenucleusinvivo |