Cargando…
Interpretable Machine Learning of High-Dimensional Aging Health Trajectories
We have built a computational model of individual aging trajectories of health and survival, that contains physical, functional, and biological variables, and is conditioned on demographic, lifestyle, and medical background information. We combine techniques of modern machine learning with an interp...
Autores principales: | Farrell, Spencer, Mitnitski, Arnold, Rockwood, Kenneth, Rutenberg, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8681571/ http://dx.doi.org/10.1093/geroni/igab046.2534 |
Ejemplares similares
-
Interpretable machine learning for high-dimensional trajectories of aging health
por: Farrell, Spencer, et al.
Publicado: (2022) -
Forecasting Individual Aging Trajectories and Survival with an Interpretable Network Model
por: Farrell, Spencer, et al.
Publicado: (2020) -
Building, testing, and learning from network models of human aging
por: Rutenberg, Andrew, et al.
Publicado: (2020) -
Generating synthetic aging trajectories with a weighted network model using cross-sectional data
por: Farrell, Spencer, et al.
Publicado: (2020) -
The Quantile Frailty Index: A Cutpoint-Free Approach to Biomarker-Based Health Assessment
por: Stubbings, Garrett, et al.
Publicado: (2020)